AUSTRALIAN FliESHWATER FLAGELLATES.

By G. I. Playfatr.

(lates i. to ix.; and three Text-figures.)
In the present paper I have endeavonred to give some accoment of all those forms of microscopic life found in omr waters, which are included under the class Flagellatae of the freshwater Atgae. From the earty days of my studies I have always felt a lively interest in the freshwater flagellates and fooked forward to a time when I should be in a prition to set forth some small attempt at a monograph "'t such ats wecur loeally. The following notes therefore, dealing with almost al the commonty vecurring speries and with a large number of forms, also, wich are not at all common, represent the gleanings of 15 years.

The moie important part of the work, however, was acromplished during the period sen, as a science researcl scholar of the University of Sydney, I was enabled to devote myself for some years to a more thorough incestigation of Australian pond life than I had previously done. It is with pleasure, therefore, that 1 here express my heartiest gratitude to the Senate of the University for afforded we the opportusities which have resulted in my hringing a longeherished desire to a successful issue.

In conjunction with these notes should be taken my carlier paper on "The Genns Trachelomonas." ('these Proceedings. xl., 1915) which was written in advanee, on account of the very large number of new forms observed in that genus. The title "Australian Flagellates" may perbaps be considered too grand when it is observed that all the gatherings were made in two loealities only, viz.: -the suburts of Sydney and the neightourhood of Lismore. This, however, is not so. for the Flagellates are entirely eosmopolitan and the ordinary forms always very wide-spread. In moving from one district to another one merely picks up the same common form over and over again. The rarer varieties, on the other hand, are generally polymorphic forms without any local attaehment whatever, but merely the result of unusual combinations of rain and shine, temperature, movement and stagnation in their habitat. It is for this reason that they are uncommon. They are entirely the product of their enviromment. In a very large number of cases also, they are simply stages of growth which have become fixed at that point either by the induration of the cell-wall or by the lack of any stimulus to further growth.

Given a suitable district the most advantageous course to pursue is to thoronghly exploit its treasures over a term of vears, by repeated gatherings trom esery little pond, readsitle paddle, or piece of swampy gromd. All the forms marked "Lismore" in this paper were gathered within a eircle no more than 2 miles in diameter, and yet after my having thoronghly ransacked this comparatively small area for eight years, two tine specimens, never previonsly recorded-Mallomomas litomesa Stokes and Trachelomonas splendida, n.sp.make their appearance from pools already well searehed (Marel, 19:0). Compare my remarks in "New and rare treshwater Algae" (These Proceedings, xliii., 1918, p. 498). Trachelomonas splendida was olstained from the prool there reterved to.

Mention is here made of 172 forms of thagellate life representing 39 genera; 105 being classel as species, 60 as varieties and 5 forms. Ot these, 43 species, 48 varieties and 5 forms ($9(6$ in all) are considered to be hitherto mondescribed. One genus, Sciutille, is proposed as new.

These figures, however, do not inchale the lut forms of Trachelomonas previonsly recorded. When these are added, the total number of non-Volvocine Flagellates observed to date, stands at 276 . The proportiou of new forms may appear rather large, but it should he borne in mind that hardly any work has been done on the freshwater Flagellates of subtropical or tropical eountries, and that it is exactly the higher temperatnes prevailing there and the greater vicissitudes to which pood life is subjectet, that are the cause of the much larger mumber of varieties to be ohserved.

The enlargement attached to the figures in the explamation of the plates is not the magnification used in ohservation of the living sperimens but merely indicates the scale (somewhat reduced) used in drawing the figures for reproduction. Observations were made chielly with a $1 / 6$ ineh holiscopic objective, N.A. .95, and 18 diam. veular in a tule-length of 6 inches. Thes: : were assisted by a $1 / 12 \mathrm{in}$. homogrenemis holoscopic lens.

FLAGELLATAE
 Protomastigineae.

Fam. BlooECACEAE.

Genus loterabdendron Stein.
Poterionenbros perinhitua Stein (1〕. i., fig. 1).
Lamica long. 17--23, lat. 8-11 μ.
Guildtord (77) : lismore ($260,290,298$).
Stein, Der Organismus der Intusionsthiere, iii., 11.i., T.xi., fig. S-11: Semn, Flagellata, 1. 123, 1. s0: Kent, lutusoria, stylubryon petiohatum (non Dujardin), Pl. xxiii., lig. 17-30; Dinobryon petiolatum Lemm., Ga1tung Dinubryon, p. 519.

The mpule has a slightly everted rim. I have never seen the zooid, but snall sprays of the cmpty cupules oceur very sparsely in my gatherings. They are generally faintly rutescent, differing in this from all forms of Dinobryon, the petioles ineonspicums and mo honger than the empules, so that the latter appear to be scrsile. They may always be distinguished from Dinobryon by a minute refringent bob at the base, marking the head of the petiole which is there slightly dilated. Main petiole ut a spray noted- -55μ long. For Stylobrgon Fromenal (see Kont, l.c., I'l. xxiii., fig. -99) the arrangement of the ropoles in
the figure differs from both Dinobryon and I'oteriodendron. Dmohryen petiolatum Duj. (Hist. Natur. des zooplytes Infusoires, p. 322, 'f'i., fig. 22) has nothing to do with Poteriodendron, as the author says "animanx reets."

Var. Abborti (Stokes) milhi. (Pl. i., tig. 见.).
Cupules conical-campanulate, rim not everted, dimensions same as those of the type.

Sydney Water-Supply: Lismore (260, 290).
Syn. Stylobryon Abbotti Stokes, Intusoria of the U.S.. !. 79, Pl. i.. fig. 12; Dinobryon sertuluria forma, Playt., Plankt. Syd. Water, p. 515, Pl. 57, fig. 5; D. sertularia var. conicum. Playf., Vrw. Alg. Lismore. p. 315; Cf. Stein, l.e.

Stokes gives a good detailed aceomnt of this form and its zooid, but his figure is incorrect, as he says that the eupules are twice as long as the maximum breadth (true also of Stem's and of our own) whereas in fig. 12 the proportions are only $6: 5$. I find the two foms intermingled in the same spray.

Fam. CRASPEDOMONADA('EAE.

Gemus Spifaerofica Lauterborn.

Spilafroeca volvox Lanterbern.

Coenob. diam. є. 15μ; cell. long. circa 5, lat. 厄. ${ }_{3}^{3} \mu$. Lismore.
Cf. Senn, l.c., p. 126. t. Stb (after Lauterborn). Very rare, only once noted as a minute coenobium of hyaline cells ratiating from a centre as in Symura. The cells were so small and the outlines so indistinct that even under a high magnification I was mable to make out the details. Senn gives the dimensions as, eolls $8-12 \mu$ long, coenobium up to 200μ.

Gemus Salpixfoeca Clark.
I do not think that there is anything wharacteristic of the species in the presence, absence or length of the petiole in this genus. Kent's figures. l.c., Pl*. f. and vi. sjem to me to show this distinctly. Pl..., f. © 0 , makes it quite clear also that the connobinm may simulate Petiolatum so that in the alsence of the zooid one cannot be distinguished from the other.

Salpingofel amptrlacea (A. lir.) Stein. (1Pl. i., figs. 3, \ddagger).
Cell. long. 10, lat. $4{ }^{4}-61 \mu$. Lismore (302) .
Syn. Chytridium ampulluceum, A. Braun, "On Chỵtridinm." T. v., f. 24 2^{7}; Stein. l.c., iii., H. i., T. xi., t. 6. 7. Quantities noted on one ocrasion on Oedogonium-rare, however, in my experience. Kent's figures of S . amphoridium, l.c., Pl. f., f. 2. 5, at least, should be ronsidered as representing this species, the long narrow tubular neck being characteristic. A minute pedunele may sometimes be observed and is probably very often present when not noticeable.

Var. cordata, u. var. (Pl. i., fig. 5).
Loricae corpore condiforme nee globos. inferne amminato, laterilus levissime areuatis. Long. 10, lat. $4 \frac{1}{2}-6 \frac{1}{2} \mu$. Lisnore (302). Cum forma typica.

The body of the lorica is more or less heart-slaped, not globose, and runs to a point beneath. Kent describes and figures (l.c., Pl. v.., figs. 13-16), species S. amphora Kent and S. urceolata Kent, of sumewhat similar shape, but without the long neck. On Oedogonium in quantity, mixed with the type.

Salpingeeca amphoridily Clark．

If I say that 1 du not know whether 1 have ever obeerved the trpe of this species．it is because Clark＇s original figures（Ann．Mag．Nat．Hist．，Ser．ir．， vol．i．， $1868, \mathrm{p}$ ．203）are difficult of access，the nigures given by varions authors all difier among themselves and，though typical fonus are distinct enough，it is not alwar＝easy to say where s．amphoridium ends and S．ampullacea begins．

Latelv．howerer，I have obtained good pencil sketches of（＂lark＇s type figures． He gives two，which are nut in the least alike．The second has never．to my knowledge．been observed or figured since，and as it is far the most common form of salpingoeca in this country．I have adopted it as var．australica （infra）．The other is nearly，but not rtuite identical with Kent＇s figures（In－ fusoria．PJ．r．，figs．3，4．and 7 （mly，e－pecially fig．4）－this，therefore．must be considered as the type．It has an almost exactly globose bods．romnded below， somewhat prodnced and ovate above．but rers little narrowed or constricted in the throat，the sides diverging upwards and ontwards straight to the wide mouth， rim not everted．There is $n 1$ distinct tubular neck．Kent＇s figures are all too narrowly ron－tricted and some verge on 5 ．ampullacca．

Var．actralica mihi．（Pl．i．，fig．（6）．
Cellulae minutae．sesiles：inferne rotundatae，superne ovatae，haud vel lesi－sime eonstrictae．lateribus ad os convergentibus，ore non everto．（oblo nullo vel haurl distincto．

Cell．Jong．8－14．lat． 4 －（i，lat．oric $1-2 \mu$ ．
Auburn：（iuildford：（＇asino（189）：Lismore（254．206））．
Our commonest form；found sesile on spirogyra，Iydrodictyon，Oedogo－ nium，wore rarely on（＇yclops（Entomostraca）．The rells are ovate，rounded below，narrowed above．side converging to the narrow mouth，or？very slightly （onstricted，if at all，therefore with noformation of throat or beck except the very least straightening of the sides below the mouth，rim not turned out． Senn＇s figure of S．amphoridium，Flagellata．p．1：2．fig．Sja（after irancé），bas the same shape ot opening as var．custralica，but below is very＂trongly in－ flated，much more so even than in Clark＇s type．It might stand as var．Francei． Butsehli＇form with flat lase．figured by Kent（l．c．，Pl．r．．fig．33）should rather．on acrount of the distinct neek and everted rim，be ronsidered a variation of \therefore umpullacta．

Salpliofora twhin kent．（Pl．i．，fig．7）．
Syn．A．ampharidium Stein（mon（lark），l．c．，T＇，xi．f．1－5．This form might well have bren arranged as a variation of s．amphoridium．The loriea has the same rlaracteristiv wifle mouth am throat but no neck．The borly．however， in－toad of boing globular．is drop－－hageal with a minute protuberance beneath， acting an a predurele．
（cell．long．21；lat．（merp）．T．constrict．23，oris 5 品．
Fairfich（112）．Out of weeds in al＂rocek prool．
Salpintiond mbincta tein．（Pl．i．．fige．8．9）．
（coll．long．11－1f；lat．4！－1；lat．oris 33；：tip．long．4－5
Guidford（77．88）：Li－more（260）．
＇f．Stein．l．r．，T．x．．fig．ix．，4．Zooid not observed．Stein＇s figure works

what doubtful--it might he a form of Poteriodendron. Out of weeds in a creek pool, along with Dinobryon and Poteriodendron.

Fam. PHALANSTERIACEAE.
Genus Phalaxistericur Cienkowski.
Phalansterium coxsochatca (Fres.) Cienk. (Text-fig. 1a).
Cuenob diam. $100-440 \mu$.
Auburn (140, 149); Rookwool ; Lismore (308).
Cienkowski, Beitr. z. Kenntn. mikrosk. organismen; Kent, Infusoria, Pl. xii., f. $5-9$; Stein, l.c., T. vii., fig. 1, 2. Generally met with in ground gatherings in swampy places. It orcurs as irregularly circular or oval "ushions with scalloped edges, consisting of a pale yellow or brownish mucus, minutely grannlar. In optical section at the edges the eushion shows as composed of a series of radiating wedges, each containing two pells near the margin. From above, the structure is irregularly polygonal.

Fam. MONADACEAE.
Gemus Dexdromoxas Stein.
Dexdromovas virgaria Stein. (Text-fig. 2e).
Naturg. 1. Flagell., H. i., T. vi., fig. 1-5. Very rare, noted only once, from the Richnond River at Lismore (186) as a spray of a large number of living cells, the latter $10 \times 8 \mu$, agreeing in shape with those figured by Stein. Differs from Anthophysa in having a delicate branched coenobium, each rell being fixerl at the end of a separate lranch; cf. Semn. l.c., p. 133.

Gemus Axtionphysa Bury.

- Anthophysa vegetans (O. F. Muller) Stein.

Coenol dian. $24-28$; rell. long. 12 , lat. $\frac{1}{} 6 \mu$.
Auburn; Parramatta; Lismore (253, 260, 263).
Cf. Strin, l.c., T. r., fig. 1-17; Senn, l.c., p. 133, fig. 890. This organism consists of a cluster of cuneate cells attached to stones or weeds by a very irregular mucous peduncle which gets gradually drawn ont thinner and thinner by the movement of the flagellate cells until the eluster breaks away and becomes a free-swimming stellate coenobium. The shape of the cells seems to vary from pyriform to poneate, generally the latter as far as my observation extends.

> Gemus Ceffalothametem Stein.
> ('ephabuthamitum cyclopum Stein. (?) (Text-fig. 2f.)

Long. corp. 10, lat. 3; long. stip. 10; long. flag. is 20μ.
Canley Vale (128).
A few single zooids noted on the shell of an entomostrawan.
They were hyaline and perhaps represent this species. Of course, each coenobium must begin with a single stipitate or sessile zooid. Cf. 'ephalothamnium caespitosum Kent and (\because creneatum Kent; also Anthophysa stagnatilis Stokes. p. 83, Pl. i., f. $16,17$.

Fam. BODONAC'EAE.

Genus Bowo Ehr.
Bobo edas kitels. (ll. i.. fig. 10).
Flagellatenstudien, Zeitsehr. f. wiss. Zool.. lid. ly., 1892. (\%. Semn. l.c., p. 135. f. 90. Oval, more or less flattened on une side, pointed in front, rounded behind. with two distinct llagella near the anterior end, one at least, it mot both, often dirccted backwards. A large coloured food ball often noticeable towards the hinder emt. Contraetile vesiele in front.

Long. 15, lat. 10μ. Lismore. Rare.
Bodo salfaxs Elir. (Pl. i., fig. 11).
('f. Stein. 'T. ii., Abt. vi., f. 1-T and Abt. v., t. 15: Kent (Diplomasti.s) Pl. xxiv., f. 1l-12; Forbes and Richardson, Biol. Upper 1llinois River, Pl. lxxxiii., f. 9 (after Kolkwitz). These authorities all agree in identifying this -pecies with the minute drop-shaped flagellate which is commonly seen under the microscope pecking away at any dissolving mass of protoplasm. The body is slightly curved, broadly romded behind and somewhat pointed in front. Here are attached two. long, distinct flagella which are tumed backwards under the amimalcule. Occasionally it fastens itself to some rotting orgamism lyy its pointed anterior extremitr, holding on, no doubt, by the bases of the flagella. Of. Stein, T. ii., Abt. v.. f. 12 and f. 15, in which state it has been described as Colporlella pugnax Cienkowski.

The figure of Bodu saltans given by Senn. 1.c., p. 135, fig. 90ne, would seem to belong to Bodo caudatus (Duj.) Stein, l.c., T. ii.. Abt. r., f. 1-lt (Amphimones caudata Duj. l.c., l'l. 7. fig. i.: Diplomastix caudata (Duj.) Kent. l.c., Pl. xxis., f. 1-10; ILeteromita putrina Stokes. Frw. Infus. TT.广.. p. 105. I’l. ii., fig. 6, 7.)

Other figures that seem to represent this organism are H è ${ }^{\hat{\sigma}}$?romita rostrata kent, Pl. xs.. fig. 18 © 2 , H. uncimata Kent. Pl. xr: fig. 29, and H. adunca Mereseh. in Kent. Pl. xv.. f. 44.

Fam. AMPIIMONADA('EAE.

Genus Rutpidodevpron Stein.
Rifpibodendron huxlfit lient. (Text-fg. 1b).
Not uncommon in bottom samples from swamps pools. The elecrant pale vellow fronts of the eoedohium attain to about 250μ in length. The animaleules themselves are minute and inconspicuons rells situated at the tuss of the branches. Cf. Sitin, T. ir.

Auburn; Grafton (265): Linnore (254. 308. 316).

Distomatineae.

Gemus Traepomonas Dujardin.
T'repomonas agillis Du,j. (Pl. i., fig. 12).
Dujardin, op. cit., p. 294: Senn, p. 149, hig. 103c; Stein, '7. iii., Abt. iii., f. 1-14.

Lismore (344). In the water of putrid swamps.

Test-fier. 1.
(a) Phalansterium consociatum (Fres.) Cienk. x 500; (b) Rhipidodendron Huxleyi Kent. x 375; (c) Chromulina ochracea (Ehr.); (d) Chr. ovalis Klebs; (e) dillo seizing a Pacterium; (f) Chr. pyriformis, n.sp.; (g) Chr. cuneata, n.sp,; c-g $\times 200$.

Gemu: Hexamita Dujardin.
Hexamita inflata Duj. (Pl. i., fig. 13).
Dajardin, p. 296; Stein, T. iii., Mht. iv., f. 1-6.
Lismore (344). With the preceding species.
Dujardin gives the length as $17-20 \mu$. What 1 figure is probably a vonng form, as the whole front half of the body was homogeneons and transparent, nor did I observe the four anterior flagella whieh might, however, bave been present. The shape was almost quadrangular, romded and bas-shaped in front, truneatermarginate behind with distinct angles furnished eaeh with a long flagellum.

Chrysomonadineae.

Fam. CHliomLLINACFAE.

Genus ChromtliN゙A Cienkowski.
Cinomdlina flavicans (Ehr.) (Text-fig. : a a-d).
Cuenob. diam, $\underline{2}^{2}$ - 60 ; cell. diam. $\mathrm{S}-12 \mu$.
Centennial Park, Syduey.
Syn. Monas flavicans Ehr.; C'hrysomonas flaticans (Ehr.) Stein, op. cit. T. xiii., f. 16-19. Very rare, only once olserved. Our forms agree pertectly in size and appearance with Stein's exellent tigures in Naturg. d. Flagellaten. The dimensions of his figures work out at: coenob, diam. 15-65, cell. diam. $7-10 \mu$. The chromatophores are yellow-green, arranged as in Symere and Mallomonas. When mature, the cells are globose, but from self-division are generally found more or less oval.

('hromilhina ordracka (Ehr.) (Text-fig. 1c).

('ellulae sphaericae, diam. $5 \frac{1}{2}-8 \frac{1}{2} \mu$. Lismure (294).
Minute spherieal edls with two yellow-green chromatophores longitudinally and rather irregularly disposed within the cell and not quite parietal. There is a minute stigma and relatively large c.x.

Syn. Monas ochracea Ehr.; Chrysomonas ochracea (Ehr.) Stein, f. xiw. Abt. iii., f. 1, 2. This amd all other forms of ('hromulina mentioned here were found enmeshed in the mycelium of a fungus suromuding a rotting plant stem floating in swamp waters.
("uromolisa ovalis Klebs. (Text-fig. If, e).
(${ }^{6}$! l. lons. $8 \frac{1}{2}-11 \frac{1}{2}$, lat. $5 \frac{1}{2}-7 \frac{1}{2} \mu$. Lismme (294).
C't. Senn, op. cit., p. 154. I'. 107. 132. Oval ow oblong in contonr, with a derided nick to one side in front from which the thagellum spring.. At this point there seems to be a kind of protrusile or distensible pharyns. I noted one feeding on cells of Bacterium termo. These were worked down the flagellum and remived with a globult of water (or plamia) which eould he observed as a rey distinct swelling passing down the side of the rell till it lodged in the porterion part of the cell. Exactly the sane proeenlure is depicted by Sem. p. 119. in the "ase of Oicomonas termo Ehr. which this species of Chromatina very much wo scmbles. Is it possible that one is a saprophytio form of the other?

Chromelfia pyrifomis, n.¢p. (Text-fig. 1f).
Cellulae plus minns prriformes, fronte rotundatae, postice acuminatae. Cell. long. 11-12, lat. $5 \frac{1}{2} \mu$. Lismore (294).
Cells pear-shaped more or less, or wate, broadly rounded in front, and pointed hehind.

'Text-fig. 2.
(a-d) Chromulina flawicans.s (Ehr.) $\times 900$;
(e) Dendramonas zirgaria Stein. x 1500 ;
(f) Cephalothamnium cyclopum Stein, (:) siugle zooids, $\times 2000$.

Chbumulina ('Uneata, n.sp. (Text-fg. 1g).

Cellulae prae latitudine longines, cuneatae; fronte subtruncatae, postice aco minatae.

Cell. long. 12, lat. $3_{2}^{3}-4 \mu$. Lismore (294).
The rell is long and narrow, somewhat wedge-shaped, subtroneate in front with a moteh to one side as in Chr. acalis Klebs, sharp-pointed belind, sides slightly arehed.

Genus Mallomoxan Perty.
Malmomosa acaromes Perty. (H1. ii., fig. 1, 2).
Cell. long. $21-42$. lat. 12- 23 : setae long. $12-30 \mu$.
Auburn: Guildtord (8t): Parramatta (136): Clyde; Wyrallah; Lismore (261, 287).

Syn. Mallomonas Plosslei l'erts, see Kent. I7. xxiv.. f. İ, 73; Lepuidoton dubium Seligo. Many forms of this species may he found, as it is very variable in its growth. [have notel subglobose, owal. owate pointed in front, ovate pointed hehind. elliptic; but mobably they are all growth forms of one and the same organism. There is evidence to show that Mallomonas develops from a small glohose cell, and according to its rate of growth, and the line of development that it takes, so is the resulting form. In every speeties the fully-developed form is linear-elliptic or oblong-elliptic. In M. acuroides also the cell may be furnished all ower with setace or some part of the surface may be dewoid of them. or again they may be entirely wanting, and oeeasionally they are so delicate as ahmost to eseape observation. Cells as low down as $14 \times 10 \mu$ have been noted. Jerty's type is really an immature form of the speries, and these may generally be recognised by having the e.v. at the hinder end; in the mature form they are set in a circle at the posterior thid of the cell. Compare here M. elegans Lemm., Sehwed. Gowaser. t. 14, and M. tomsurata Teiling, Sehwed. Planki., i., fig. 3.

> Madomoxas splfadex (G. S. West) Playl'. (Pl. ii., fig. 3).

Cell. Jong. 30-56. lat. ! - 13 ; schac long. $16-36 \mu$.
Auburn : Sydney Water ($64,50,81$) : Botany (142): Botanic Gardens (3): Wyrallah; Lismore (241, 260, 261, 316).

Syn. Lagerheimia splendens G. S. West. Algae Yian Yean Reservoir, p. 74. Pl, fi, f. \& - S. Indging by my reeords this species is even more common in our waters than M. actoroides, and it is generally foum in the mature shape, if not always the full size. Indeed. I know of only one yonng form (infra). There may be any number of setae from 2 to 4 before and behind. They diffe: from the setae ol M. acaroides, which are like very fine hristles, in being stouter. of a spimos nature and inflated shongly at the base. Those in fromt are genesally carried at right angles to the body, the hinder grond project right baek. they are eapable of a slight amome of lateral mosement.

Var. Pusilla, n.war. (Pl. ii.. fig. 4).
Formar multo-bevior, whongu-ovalis, setis nullis observatis, membrana glabra, striis obliquis 34 deeusatim dispositis ornata.
('ell. long. $10-17$. lat. $8-12 \frac{1}{2} \mu$.
Syduey Water (80. 81) : Centemial Park, Syhney: Byron Bay.
Probably a young form cither in process of growth or fixed by inerassa tion of the eell wall before reaching maturity. It is muchs shorter than the type though almost as broad as a full-grown specimen. Ohlong-asal in shape, membrane smouth, crossed by 3 w. 4 , very fine. whiguely disposed, eriss-ross grooves having the appearance of striac. No setae in the specimens noted.

Mallomonas australica, n.sp. (Pl. ii., fig. 5).
Cellulae elliptieo-cylindraceae; mediis lateribus fere rectis; apieibus laterotundatis. Membrana hyalina incrassata, granulis parvis in seriebus transversis orelinatis ornata; setis nullis notatis.

Cell. long. $20-25$, lat. 10μ.
Botanic Gardens, Syduey (3) ; Butany; Guildtord; Lismore (245).
A nuth rarer species than either of the foregoing. When mature it is oblong-cylindrieal with broadly rounded ends, and crossed transversely but not obliquely by rows ot small granules. No setae observed.

Var. gracillima, n.var. (Pl. ii., fig. 6).
Forma gracillina, magis stricte rylindratea; lateribus fere rectis, apicibus rotundatis. Membrana nt in torma typira; setis nullis.
('ell. long. 2.2, lat. 4μ. Lismore.
Var. subglobosa, n.var. (Pl. ii., figs. 7, 8).
Cellulae subglobosae vel ovales, plerumque fronte paullo angustatae; resiculis contractilibus 4 juxta extremitatem posteriorem; ceteris ut in forma typica.

Cell. long. $21-27$, lat. 16μ. Lismore (316), from swampy ground.
These are probably young arowth forms of the type, either still in process of development or, as I think more likely, which have become fixed by the hardening of the cell-wall due to stagnation. On either view they give us a glimpse of the life-history of the organism.

> Mallomonas litomesa Stokes. (Fl. ii., fig. 9).

Cell. long. e. 25 , lat. e. 5μ. Lismore.
Stokes, Freshwater Infusoria of the U.S., Jurnal Trenton Nat. Hist. Soc., i., 1888, p. 92, Pl. i., f. 32.

Very rare indeed, only once observed. The body is linear-elliptic, membrane delicate and smooth (Stokes says howeser "Cuticular surface finely crenulate"), a few straight setae at the hinder end, but those in front are charaeteristic, being six in number springing from a small membraneous projection and curved back like the ribs of an mobella. Chromatophores pale vellowgreen, close to the eell-wall.

Var. curta, n.war. (Pl. ii., fig. 10).

Cellulae curtae, oblonge; pone late rotundatae-ine setis; reteris ut in forma typica.

Lismore, with the type.
This form is very short, oblong, broadly romnded leelnind where the setae are wanting; otherwise like the type. Size not noted. A narrower and more strictly eylindrical form, much less commonly met with. Sometimes at the anterior end there is a slight membrancons bi-papillate projection, and below the flagellum, just between the ends of the chromatophores, a dark granule may ocrasionally be distingmished. I have notieed the same in Symura granulosa, of. New and rare freshwater Algae, p. 508, Pl. lvi., f. 1-3.

Fam. PHAEOCAPSACEAE.

Genur latafococeus Borzi.
Phabococces planktosicen W. and G.S. West. (Pl. ii., tig. 11).
Coenob. diam. $90 ;$ Cell. diam. 10μ. Botany.
Ohtained once only in a ground gathering of mixed microscopic life trom Garelencr's Road swamps, Botany: It was in the glococystis eondition as a hyaline, structureless, mucilaginons comobium eontaining 4 families of about 8 cells each. The cells were glubose, with two yellow-brown parictal chromatophores disposed as in symura or Mallomonas. Senn has no phtce for this gemus in his "Flagellata"; [include it here from some resemblanee to lhaeocustix, at least in its regetative condition.

Fam. SCIN'TLLLACEAE.

Genus SCINTILAA, b.gen.
Cellulat minutae, delicatissime, ovatae vel ovales; membrana tenuissima. glabra, hyatina. gramlis nullis nee setis; ehromatophoris 2 parietalibus per longitudinem disposilis; flagellis ㄹ tenuissimis; vesieulis contractilibus 2 postice instructae; stigmate mullo.

$$
\text { SCintilla cillorina, n.spl. (}{ }^{1} \text { l. ii., figs. } 1 \geq-14 \text {). }
$$

Cellulae ovalae subenmeatale, fronte angustiores, postice late-rotundatae; polu anteriori monlice deplanatae et sape levissime emarginatae; membrana delicatissima hyalina glabra: Hagellis 2 temissimus; ehromatophoris 2 luteo-viridibus; stigmate nullo.

Coll. long. $T_{2}^{2}-21$; lat. $4 \frac{1}{2}-12 \frac{1}{2} \mu$. Byron Bay ($3=4$).
A very rare llagellate whiets I obtained in some tuantity from the drained bog at Byron Bay soon after rain. In shape the cell varies from orate to subcuncate, narrower in front, wedl rounded behind, sides often somewhat tlattened towards the anterior end, which is subtruncate and slightly emarginate. Memhane very delieate and indistinguishable, smooth, hyaline. withont markings or setae; thagella two. The eell contents are arranged as in symura or Mallomomas with two, thin, yellow-greeth, parietal ehromatophores disposed longtitudinally, starting in front and gradnally developing right baek to the hinder ent. When the opposite edges of the chromatophores just oserlap in the middle there appear to be four longitudinal chromatophores but this in an illusion. The posterior portion of the contents is a clear, tramsparent, homogeneous mass, generally surrounded by large amylaceons gramutes: no stigma. but there seem to be two pulsating varuoles behind. With dilute formalin the eell crumples up at one to a shapeless mass, extruding the eontents; this does not oceur in symura or Mallomonts. It is generally taken to indicate the entire absence ot cell-wall, but of this I hase my doults. Cf. I'hacorystis globosa Scherfel in Lemmermann (Nord. l’ankt., xxi.) Flagellatae, p. 2. f. (i.

Scintilla ipleamba, n.sp. (Pl. ii., tig. 15).
Cellulae ovales, polos versus praceipne anteriore modice atlematae, fronte levissime emarginatae; membrama glabra gramulis nullis nee setis; flagellis ? tenuissimis: stigmate mullo; chromatophoris obscure viridibus.
(ell. long. 31. lat. 19μ. Lismore (347).

This species is half as large again as the foregoing and very different in appearance. It is elliptical-oval, not ovate. but the minute emargination in front may still be noted. The membrane is smooth and hyatine, showing no sign whatever of markings or setac. I examined al specimen with the $1 / 13$ th inch homogeneons immersion lens; the internal organisation is exactly as in Symura or Dallomonas, the anterior third consisting of very fincly granular protoplasm, the posterior two-thirds of a globe of clear, transparent, homogeneons material surrom ded by large amylaceous grandes, the whole being enelosed by two delicate parietal chromatophores. The colour of the latter was wery distinct, being neither vellow-green nor chlorophyll-green, nor brownish-green, nor blue-green, but a deep gray-green. Very little reliance, however, ean be placed on the colour of the ehromatophores in the chrysomomolineue as a study of Cryptomonas soon shows. Two very delicate tlagella noted, which seems to separate the organism from Mallomonas; I was not able to detect the pulsating vesicles, but from '2 to 4 will probably be tound towards the hinder end of the cell.

Fam. TESSELLARIACEAE.

Geuns Tessellaria Playfair.
Tessellaria yolvocina Playf.
See description and figures in "Freshwater Algae of the Lismore Distruct" (These Proceedings, 1915, p. 315, Pl. x|c., f. b. 7, under Tessella). Also a further note in "New and rare treshwater Algae" (ibid., 1918, p. 508, Pl. lvi., f. 4). I have nothing to add to these notices exeept to remark that the organism is not as rare as 1 thought at first. I have obtained plenty during the last few years.

Fam. HYMENOMONADACEAE.

Genus Synura Elirenberg.

Synura virescens (Bory). (Pl. ii.. figs. 16-18).
Coenob. diam. ad. 137 ; vell. long. 22-24. lat. $7-9 \mu$. Wyrallah; Lismore ($24-3.314$).
Syn. Urella virescens Bory, Eneyclop, 1824 (teste Dujardin, p. 301); for figure see Kent, Fl. xxii., f. ?1-26, but the ehromatophores are contracted. In "Freshwater Algae of the Lismore District," p. 314, I recorded this speeies as Synura uvella Ehr. All the authors, however, who have figured the latter, show the cells as elothed with fine setae; cf. Stein. T. xix., Abt. i.. f. 1-7; Kent, Pl. xxiii., f. 1. 2; Senn. 1. 162, f. 116a; Klebs, Flagellateustudien (Senn's fig. A2) and others.

This makes it plain that if s. uvella is found here it must be very rare, as in twenty-five years 1 have never seen a specimen of a Synura showing setae. This smooth speeies, S. virescens Bory, however, is oceasionally met with, though by no means common either. I figure three forms which may all be noted either separately or intermingled in the same coenobinm. The membrano is very thin and does not show as a double line; the chromatophores lie close to it. No stigma noted, but I think that one or more minute stigmata may oceasionally be found, thongh rarely, in all forms of Synura and Mallomonas. Stokes (op. cit., p. 117) records this speeies from U.S.A.

For descriptions and fignres of s'. granulosa Playi. and its var. pusilda Playf. see Frw. Alg. Lismore District ('These Proceedings, 1915, p. 314, Pl. xlv., f. 3). Also New and rare freshwater Algae (Lbid., 1918, p. 508, Pl. Ivi.. f. 1-3).

For Symura australiensis Flayt'. see These Proceedings, 1915, p. 315, P1. slv., f. 4, 5.

> Fam. OCHROMONADACEAE.

- Genus Ochromoxas Wysotski.

> Ochbomoxis AnPera, n.sp. (Pl. i., tigs. 14, 15).

Cellulat a frome subcirenlatae anterime sacpe trumatae, posteriore rotundatae, margine gramulis aspera; a latere montice compressae, ovatae, anteriore acuminatae; membrana nulla vel tenuissima et indistincta; plasmate granuloso, chromatophoris (2?) hutev-viridibus, obsenis; flagello singulu; vesiculis contractilibus geminatis minutis uno latere juxta marginem anteriorem dispositis; stigmate nullo.

Cell. diam. e. $8-10^{\mu}$. Byron Bay (324).
A very minute flagellate composed of byaline planma studded with amylaceons gramules which give a rough appearatee to the surfare, sbowing through the cell-wall if any is present as it is not noticeatle. In shape the rell is sub-eirenlar in tront view, sometimes truncate above, and in side view somewhat compressed and ovate. There is an obseure patch of yellow-green chromatophore near the anterior end, a single dagellum and a pair of minute e.v. at one side near the fromt margin; no stigma. The animalenle ean project ontwards a large wave of membrane (?) or clear bomogeneons plama, and seize any particle of tood in its vieinity.

Ochromoras cylinhracea, n.sp. (Pl. i., fig. 1(i).
Cellulae eylindraceae, utroque polo rotundatae, in medio interdum paullo constrictae, margine gramulis aspera; memhrana mulla? vel temussima ?; platmato granuloso; chromatophoris obseuris (2?) luteo-viriditus, juxta marginem anteriorem; Hagello singulo; stigmate nullu.

Cell. long. ©. 17 , lat. 5μ. Byron Bay (3:4).
Cylindrical in shape, roumded each ent, slighty ronstricted in the middle, other details as in the preceding speeies. Both forms ohtained along with seintilla chlorina trom small rainwater pools in the drained bog at Ryron Bay.

Genus Disobryon Ehtenterg.

(elll. long. 2(i-38, lat. max. 9-10. lat. wris 8-10, constrict. i- S_{μ}. Cyst diam. 14μ.

Botany (ㄹ) : Botanic (iardens (3) : Sordey Water (20) ; Centemial Park, Syine. (133) ; Duck Creek, (lyde (74); Guidford (172): Fairfield (83, 143); (Canley Vale (111); Wyrallah; Byron hay; Lismore (332, 345, 307, 316).

Syn. Dinobryon sertularia var. cylindrieum in Plankt. Sydney Wrater, p. 516, 11. 57, fig. 6. Our common form answers exactly to Ehrenberges tyer, lont in apparently somewhat smaller. The usual size of the lorisa here is long. 30-35, lat. max. 9, whereas for Luropean secimens Lemmermann gives long. 4t, lat. max. 13, lat oris 13, constr. 10-11p. Stwin's figures work out at an average of long. 46. lat. max. 12μ.

I have met with none longer than 35μ, and Bernard, Protococe. et Desm., p. 209. ft. 570 , gives $28-35$ by $8-10 \mu$ for Javanese specimens.

Two shapes are fornd, (1) with hont conical lower end, and (2) with the lower end drawn ont and pointed; both are common and usually intermingled. The cyst which I have only noted twice is spherical with low broad collar, the membrane faintly and sparsely serohiculate.

Var. angulayum Seligo (Pl. i., fign. 22-23).
Cell. long. 3: 10, lat. 9, lat. uris $8-9$, constrict. $7-\mathrm{S}_{\mu}$.
Fairtield (83, 112, 143).
('f. Seligo, Uber einig. Flagell. d. Susswaseer, p. 6, f. 1. syn. D. cylindricum var. angulatum (Seligo) Lemm., Gatt. Dinobryon, p. 518, T. 18, 1. 24. Lemmermann has arranged this form under ID. cylindricum; l find it here, however, in company with D. sertularia and of similar dimensions. D. cylindricum is a much larger form than any of ours, so I think it best to fall back on Seligo's original arrangement. Probably the same form is common to both species.

Dinobryon cylndmeum var. phergexs (1mhut) Lemm. (Pl. i.. figs. 24, 25).
Cell. long. f"- 50 , lat. max. 8-10. lat. uris 8-10. constrict. $(i-7 \mu$.
Sydney Water ($63,64,90$); Centennial Park (133); Canley Vale (111); Fairfield (130).

Syn. 1). sertularia var. divergens in Flankt. Sydney Water, p. 516. Pl. 57, f. 7. Nearly all the specimens 1 measured were either long. 44μ or long. 50μ.

Var. Schacinslandir Lemm.
('ell. bong. 4t 50, lat. max. 9-10 μ.
Sydney Wrater (90); Canley Vale (111).
Syn. D. sertularia var. Schauinslondii in Plankt. Sydney Water, p. 516, lll. 57, f. 8. Found in company with var. divergens, of which it is really only a form. Onr specimens are so slightly wrinkled as to make separation difficult.

> Subgenus Epipixis (Ehr.) Lauterborn.

Dinobryon utriculus (Ehr.) Klebs. (19l. i., fige. 26-27).
Cell. long. 20-25, lat, max. $7-8$, lat, oris $4-5 \mu$.
Sydney Water (22) ; Guildford (77).
Syn. Epipy.ris utriculus Ehr., Infius., p. 123, T. viii., f. 7; Stein, T'. xii., f. ©-11; Klebs, Zeitschr. 1. Wiss Zool., Bd. 55, p. 414 ; Lemm., l.c., p. 512, 'T. xviii., f. 1. Our specimens are much shorter than the European; Lemmermann gives long. $30-46$, lat. $7-10 \mu$.

Var. Tabellarlafe Lemmermann. (Pl. i., figs. 28, 29).
Lorica c. stip. 23-28, lat. max. 7-9. lat. orif. $4-5 \mu$. Cyst. diam. 14μ.
Fairfiekl Guildtord (77, 124) ; Centemial Park, Sydney (133).
Lemmermann, Das Plankton schwedischer Gewasser, p. 119, T. i., f. 19. This pretty little form is not uncommon, growing on diatoms, waterweeds, ete. The cells are generally solitary or two together, rarely in clumps as in the figmre. From the comparison of a mumber of individuals it is easy to see that the petiole is formed out of the cell wall by a gradual talling together of the lower end of the loriea. There seems to be a distinct dise to the footstalk, at least sometimes. The membrane differs from other species of Dinobryon in that it is
grenerally somewhat rufescent with a specially dark band aeross the midelle. I have never seen the living amimaleule. Lemmermann gives long. 2?, lat. mas. S. epening $+5 \mu$ as the dimensions of the lorica.

Cryptomonadineae.

Genus C'hlemoxis Ehrenberg.

Found in swamp waters almost everwhere; it seems to me very probable that it is a small saprophytic form ol ('ryptomonas; it has the same series of shapes as Cryptomonas orata.

Cell long. c. 30 , lat. c. 10μ.

> Gemun C'nyptomonas Ehrenbery.
(mpmosions ovata Ehr. (ll. ii., fig. e3).
Senn (Flagellata. P. 169) remarks on the variability of the chromatophores in this gens and it is particularly notieeable in this speeies. I have noted the following eolours:-Pale nut-brown, deep nut-brown, brownish-green, greenishbrown, yellow-green, pale chlorophyll green, deep ehlorophyll green. Amost always to be foum in swamp waters, but never in great quantities.

Cell. lung. $25-10$. lat. $10-18 \mu$.
('ryptomonas ampllas, b.sp. (1ll. ii., fig. 24).
(ellulat quam in C. orata majores, longe ovales, lateribus areuatis: pone roturdatate. fronte oblique truncatae et intra, uno latere, ralde excavatac. Chromatophoris fusco-viridibus.

Cell. long. 50. lat. 23, atp. $10 \frac{1}{2} \mu$. Lismore ($32 \overline{2}, 33 \overline{7}$).
A larger form than ('. weata and wore nearly val in shape, rounded behind, sitles arehed, obliquely truncate in tront. Betow the lower edge of the truncate portion there is a ded exavation, making the eell appear somewhat irregularly flask-shaped. Chromatopheres brownish-greem, more green than brown, however. The interior seems to be differently arranged from ('. ocata also, as there is a wide hag-shaped pharynx. longitudinally striate with rows of minute punetulations. Not common.
('RYPTOMONAS MANIMA, m...p. (Pl. ii.. fig. 25).
Cellulae maxime, plus minus oblongae, fronte modice attematate, postice rotnudatae; uno latere aequaliter arcuato, alterv juxta apices interdum inllatione instructae; chromatophoris, plerumgue fusco-viridibus.

Cell. long. 50-70, lat. $22-28 \mu$.
Botany (142) : Lismore (261, 327, 337).
Double the size of C. ocolu and mueh more irregular in shape. It is ohbong in general outline, somewhat narrowed batk and tront, eaperially the later. One side is failly regularly arehed, but the other has often a slight protuberance near each end. The chromatophores are generally brownish-green, bat I have noted them pale-green and yellow-green.

('ell. long. 11--12, lat. $6-i \mu$. Sydney; Lismore (345, 34T).
Syu. C'rommonas dordsteltii Hausgirg. whose figure is reproduced by Senn.
p. 169 , fig. 123 c ; the size works out at $9 \times 5 \mu$. A minute form not uncommon here, but never betore more than a few individuals at a time. The chromatophores are described as blue-green and I have once noted them that tint, but strong and often bright blue is the rale. and turquoise-blue may sometimes be observed. Oceasionally what resembles a small pyrenoid is present near the centre of the cell, ur two smatler. one above the other.

Cryptomonas gemma, n.sp. (Pl. ii., fig. 27).
Cellulae ad C. oratam ambitu valde accedentes, ellipticae, sursum uno latere oblique truncatae; hyalinae pellucidae in medio chromatophoris binis globosis cyaneis instructae.

Cell. long. circa 20μ. Liswore (291).
This is a very curions form which 1 have met with only once, but it was present in mueh greater abundance than Cryptomonas generally is, four or five being in the field of view at one time. In shape like $(\mathbb{C}$. orata, it is perfectly hyaline and pellucid, no internal markings at all being visible exept the two dhromatopheres whieh were bunched up together in the centre ot the cell in the form of two, sharply-defined, bright blue ghobles. All the specimens were alike. In movement they were very lively; thagellates with blue ehromatophores generally are.

Cellulae minutae oblongae, utrogue polo rotundatae, sursum haud truncatae; lateribns paraltelis subrectis: chromatophoris dilute aeruginoxis 2; stagmate nullo; c.r: subapicali.

Loug. 11, lat. 6μ. Lismore.
A minute ohlong form witla roundend ands, not truncate in front, sides more or less straight. There were two pale blue-green elhromatophores and a subapical e.v. but no stigma. A little below the rentre what looked like a pyrenoid or elaeoplast. I saw only one flagellum but probably there were two, as the pyrenoid and the colour of the chromatophores indicate ('ryptomonas and not Mallomonus. Nou-motile at first, the cell became motile while under observation.

Euglenineae.

Fam. Et'GLENAC'E.IE.

> Genus Eutreptia Perty:

Eutreptia mimids Ferty. (Pl. iii.. fig. 1).
This is a rare flagellate: I have only met with it in one gathering, where. however, it occurred in good numbers. I am not quite certain whether ours is the same as the European form. It is tike Phacus momiliata rar. suecica Lemm. with the body slightly elongated and protuced below into a long blunt tail. Daugeard, who figures it (Recherehes sur les Eugleniens, p. 103, fig. 2t) makes no mention of any granules, whereas our specimens are finely puneto-granulate in spiral lines running obliquely and transversely from left to right. In side view it is elliptif, compressed. Differs from Phaces in having no amylaceons plates.

Cell. long. max. 58, caud. 21. lat. eory. 25, apic. 10μ. Botany (95).

Genus éryptoglexa Ehrenberg.

C'ryproglesa alstralis, n.ep. (Pl. v.. figg, 1S).
Cellulae late-uratae, posterivie latiores, paene subylwbosae, postice vix acuminatae, fronte quam levissime deplanatae. A latere ellipticae.

Cell. long. 13, lat. 10μ. Lismure.
('ryptoglena pigra Ehr', the only species hitherto deseribed, is shiehl-shaped, triangular, broadest above amd very pointed below. ©'t. Daugeard, op. cit., p. 139, t. 44 ; Senn, p. 176, tig. 127 b. Our form is very broally ovate, almost subglobose, widest below, hardly pointed beneath and very slightly tlattened above. The usnal deep furrow rums down one face. In side siew elliptie, slightly pointed bolow and Hattened alowe. One long thagellum; stigma to one side of the furow; chloroplasts laminar, a brilliant green. Very rare.

C'riptomilena phacoldea, is.sp. (Pl. f., fig. 19).
Cellulace orbinculares, interne modice angustatae, utroxpe polo ob sulei extremitates emarginatae; a latere plano-convexae lenticulares.

Cell. long. 21, Jat. 17μ. Lismore (351).
Another very rare form which seems to connect 'ryptoglena with Phacus, for it shows two amylaeeons plates, one large and the other small. The general shape in face view is subeireular, a little narrowed below. There is a broad furrow duwn the centre, the ends of which show as an emargination at each pole. The stigma lies to the lelt of the furrow as usual and there is the eustomary single long llagellum. In side view the cell seems to be lentieular, plano-convex. showing giblous where the furow runs. I have an idea that this is a juvenile form of Phucus, the furrow hemg diminated with growth, the last vestiges of it parsisting as the overlat of the two wings above and the slight tail below; also the rentral longitudinal ridge in Phaeus triqueter. (' f '. too Phaeus inflatus (injra).

Cell. ves. long. 9-15, lat. $5-11 \mu$. Motile zooid not noted.
Lismore (291, 307). On ('yclops, Maerothrix (Entomestraca).
(OLACHM EloNGATCM, hasp. (I'l. iii., figs. \& fi).
Cellulae regetativae rylindraceale, fronte conicac, postice rotundatat, apicihus stipite mucosa allixate. Koosporae angustae cylindraceae, medio modice eonstrictar, apieibus attenuatis acuminatis; stigmate lineari luteo-fuseo subapieali; wesiculis rontractilibus 2 suhapiealibus; flagello singulu. cllomplastidibus dilate viridibus ellipticis.

Cell. veg. long. 12-23; lat. $5-11 \mu$. Zaner. long. lin-1s. lat. 4μ.
Lismore (291, 294, 316, 327).
The vegetative form of ('. resiculosum is shortly wate, that of ('. elongatum is more or less cylindrical. rounded behind and conieal in front where it is fixed to the host by a short stalk of almost invisible muens. The bost is nearly always ('yclops, Maerothrix or some oflher of the Entomostraca. From 2 to 4 cells are olten found in a clump. What seem to be the zooids of this species are tylindrical, constricted in the middle, attenuate, and pointed at eaeh
end; diforoplasts pale green, irregularly oval, disposed more towards the himder end; flagellum single; cev. two, apical; and a yellow-brown, wick-shaped, subapical stigma. A stigma of this shape and colour is extremely rare anong the Euglenineae, thongh not uneommon in Chlamydomonas of the Jolrocaccac.

Genus Euglena Elirenberg.
Euglent vimidis Elir. (Pl. iii., fig. 7).
Of medium size; when young fusitorm in shape (cf. fig. 9), hut with growth tending to become cylindrical; blunt in front and rapidly attennated behind where it is drawn out into a minute tail. No tlagellum, or only the useless stump of one. Amylaceous granules irregular in shape and size, generally forming a large eentral mass in front of and behime the nuclens. Membrane smooth but very fine spiral striae can generally be detected with a high power lens on all speeies of Euglena. A tew minute digitate chloroplasts are usually visible in the hinder part of the cell, but the usual discoid fhloroplasts form with age, moncipally in the central portion, leaving the emts hyaline. From Datueard's deseription and figure (Recherches sur les Engleniens, p. 43, fig. 1., D) the young fusitorm specimens are charaeterised by a stellate bundle of digitate chloroplasts radiating from the centre of the eell. The dimensions he assigns are long. (68-80, lat. $14-16 \mu$. This is perhaps more nearly Ehrenberg's type. That which I figure here is the older cylindrieal form: long. e. 110 , lat. $1 \psi_{\mu}$.

This species develops in the globular vegetative cell in a manner peeuliar to itself. Both head and tail are turned in under the body, on the same side, to form a ball. When the mucus in whiel this globular rell is involved gets sufficiently thin for the ereature to get free it simply momolls head and tail and straightens itself out.

Var. sangulnea (Ehr.).
Euglena sanguinea Ehr. This red form is usually found in rompany with the type, especially when, als often happens, the organisms form a powdery crnst on the surface or on the half-dry bed of a pool. It is probably due to the action of sun and air. Under the mieroseope the eolour will be seen to be due to the gradual conversion of the rlloroplasts into orange or hrick-red globules of haematochrome (lipochrome). This is known to take place in the protococcuceat also.

Var. purpurea, n.var.
A rarer and very striking form. The chlorophyll has become converted into a wine coloured substance disposed to all appearances in fine grains.
Euflema soclabllis Dangeard. (Pl. iii., figs. S. 9).

Tery like the young form of Euglena viridis, but broader and more clavate in front. It may ahways be recognised by the digitate ehloroplasts regularly disposed from tront to back. Amylaceous gramules irregular in shape, arranged in a mass before and behind the nucleus and below the chloroplasts. Membrane smooth, finely striate spirally and whiguely from left to right. With or withont a flagellum.

Long. 92-95, lat. $21-28 \mu$. Lismore ($254,293,308,316,32 \overline{7}$),
Cf. Dangeard, op. cit., p. 86, fig. 15; for dimensions he gives $85 \times 25 \mu$. This speries almost certainly develops into the cylindrical form of Euglena viridis mentioned above. It is really the young aquatic form. while E. viridis
type is the aerial form, when the organism develops in surface crusts. Euglena sociabitis living and growing altogether under water has a characteristic method of development and a series of regetative stages entirely its own. Yet withont a dontht it reaches the same objective.

The vegetative cell is generally involved in a wide and otten stratifiel globe of dear moners.

Edglena abblyophis (Ehr.) mihi. (Pl. iii., figs. 10, 11).
Syu. Amblyophis viridis Elr. It has gencrally been considered that there is nuthing in this form to justify Ehrenherg's genus Amblyophis; at the same time I cannot agree with those who would make it werely a tail-less form of Euglema riridis. For one thing, the disposition of the cell-contents is different. Also the latter is a comparatively small species (the type at any rate), whereas Euglena amblyophis is one of the very largest forms. It is strap-shaped. rounded behind aud attenuated in front, membrane smooth, finely and spirally strate, hody very trancarent, no paramyon gramules or rods (in this respect also very different from E. viridis), no thagellum. Specimens from three loealities fairty wide apart are all in agreement.

Lung. 200-300, lat. $20-25 \mu$.
Butanic Gardens, Sydney (137); Kyogle (216); Lismore (286).
Eldiena deses Ehrenberg. (Pi. iii., figs. 10-14).
This species is narrowly strap-shaped and rery plastic. slightly attenuate in front and usually coming abruptly to a sharp point behind thut sometimes very gradually narowed to a subacute tip; no tail and only a very weak flagellum or none at all. Membrane smooth, striae not noted. In most Euglenae the striae are very delieate and need the $1-12$ th inch bomog. immersion lens for their detection. The same is true of the chloroplasts except in certain species of which this is one. Here, on the other hom, they are nearly always rery distinct, especially at the sides where they show as fittle lentionlar cushions, and are eharacteristic of the species. No paramylon srames or ruds as a rulte.

Long. 10t-180, lat. $10-18 \mu$.
Coraki; Wyrallah; Limmo (237. 254. 258, 293. 295. 347).
In a mucous stratum of spirulima major gathered on the river-hank at Coraki, there were numbers of E. deses dewloping out of the regetative cell, from which (Pl. iii., fig. 14) it was evident that they are formed by direet growth ont of the original cell itself.

Var. madeta, n.var. (fl. iii., fig. 15).
Dimensionibus fuam in forma typiea dimidio minoribus; long. 70, lat. 6μ. Lismore.

Var. gramlis, n.var.
Forma gracilior, dhloroplastidibus hand distinctis; long. 120, lat. 3μ. Casino.

It seems probable that E. deses is the base form from which both Euglena "pirogyra and E. acus are developed. Along with this narrow form was another of similar size and shape hot exhihiting the granulate striae of E. spirogyra and at the same time the arutely pointed tail of E. acus. Tpon anotber occasion I noted a form with the shape and conspicuons chloroplasts of E. deses, but with the series of paramylon rods characteristio of E. acks: and with a tail end evidently a rompromise hetween the two species. Cf. Dangearl, op. cit., p. 93.
fig. 18, var. intermedia, kilehs and p. 94 where he says: "cette variété est charactérisée par la présence an-dessus et an-dessous du noyau de quelques longs bâtomets de paramylon assez gros." (Pl. iii., fig. 16).

Euglefa oxyuris Schmarda. (Pl. iii., fig. 17).

One of the largest species. It is a strap-shaped form, sometimes slightly twisted round the long axis. The spirals and striae (the latter are coarser ant more conspicuons than usual) run from right to left obliquely downwards, focussing the upper surface. This is unusual, not to say unique. in the genus. From two to four stout paramylon rods in a single series; no flagellum; a short stout spine behind. The chloroplasts are brick-shaped (4μ long) following the lines of the striae. Stigma very large, pale, and indistinetly outlined.

Long. 250-400. lat. 22- t6 μ. Congee (4): Botany (91).
('f. Daugeard, l.c., p. 100, fig. 20, who gives long, 490 , lat. $30-40 \mu$, also Stein. T. xx., f. 4, 5 (not f. 6, which is E. tripteris Duj.).

A smaller form may also be met with:-long. 156-250, lat. $\mathbf{Q}^{0}-22 \mu$.
Var. helicomea (Bernard) mili. (Pl. iii., fig. 18).
So strongly twisted as to show three nearly equal lobes, in other details like the type.

Sum. Phacus helicrideus Bernard, Protororw et Desm., p. 206. Pl. xvi., f. 563.

Lang. e. spin. 360 - 400. lat. 40 - bio, spin. lmos. f. 40μ. Guildturd; Kyogle (219) ; Lismore (237, 260. 271).

Yar. gracillima, n.var. (Pl. iii., fig. 19).
Forma gracilior. minime torta. Long. r. spin. 253. lat. 17, spin. long. 42μ. lismore.

A very rare slender form. Hardly twisted at all and, curionsly enougl, in reverse direction to the type, thongh the striae run the usual way. The paramylon routs in this speries are really tlattened links, in which the central space has berome filled up hy gradual thickening of the sides. Its position is still indicated by a faint central line.

Euglena tripteris (Duj.) Klelis. (Pl. iv., fig. 1).
In spite of its great likeness to Euglena oxyuris v. helicoidea, this is a very distinct form, very much smaller, more common, and one that retains its characteristics remarkably well. It generally has a long flagellum. The only note I have of the twist is that it is from left to right, the opposite of E. oxyuris. C'ompare Dujardin, p. 338, Pl. v., f. T. whose figure the generally aceepted form does not very rlosely resemble; he gives long. $65-80 \mu$; also Stein. T. xx., f. G, who considers it a young form of E. oxyuris.

Syn. E. torta Stokes, l.c., p. 86, Pl. i., 1. 20.
Long. 70-150, lat. $10-15 \mu$. Wyrallali; Lismore (237, 254, 258, 286, 293, $310)$.

> Euglena spirogyra Ehr. (Pl. iv., fig. 2).

Easily rerognized by the characteristic granulate striae which, in this species, are very much in evidence and, as a rale, run obliquely from left to right. The typieal form (cf. Stein, T. xx., f. 7) seems to be cylindrical, slightly attenuate in front, but rapidly narrowing behind into the short acute tail. Membrane somewhat rufescent giving the specimens a yellow-green colour.

Another form, however. which 1 have found in great quantity, is broadly strap-shaped, not at all, or very slightly, attenuate in front where it is broadly truncate; behind narrowing rapidly to the short aeute tail. The membrane in this form is generally very rutescent, the specimens appearing greeny-brown. I have no figure of this form, thongh it is sery common. On decomposition the skin often splits up into a wisp of longitudinal fibres, the striae, which are then seen to be eomposed entirely of the granules, showing as minute brick-shaped eylinders set on end side by side.

Long. 160-250, lat. 18-36, long. eaud. $25-30 \mu$. Sydney; Wryallali; Lismore.

Forma. (Pl. iv., fig. 3).
Cylindrical, rounded in front. and attemate behind into a short tail. An interesting form showing beyond a donbt that the membrane may be at first smooth, the gramules developing by degrees. Speeimens indeed are often noted in which every second or fourth row of granules is more strongly marked, the intermediate series being of later growth. Paramylon rods link-slaped in this speeies as in E. oryuris.

Var. elegans, n.var. (Fl. ir., fig. 4).
Forma anguste eylindracea, fronte minime attenuata, postice in eaudam brevem aeutam produeta. Membrana hyalina tenuisima, striis delieatissimis, minute granulatis. Flagello nullo.

Long. 110-136. lat. 8-12, long. caut. $10-16 \mu$. Casino (223): Lismore (293).

A small and rery slender eslindrieal form, almost truncate in front and rapidly narrowed behind. The membrane clear, delicate and very finely striate with minute puncta-gramules. No thagellum and no paramylon rods. On others in the same gathering no grantles at all could be detected. Out of mud from the edge of a lagoon.

> Ftciend aces Ehr. (Pl. ir.. fig. 5).

Fusiform, subrostrate in tront, very gradually attonate behind, where the lines of the body merge unintermptedly into the fong, aentely $p^{\text {winted }}$ tail. Generally ative, with a long thagellum. Membrane very smoth, no striae visible. A long series of $6-10$ paramylon rods is characteristic. though mot always present.

Long. 150-210. lat. $10-123 / 2$. Auburn: Lismore (208, 327).
rf. Stein, op. cit., T. xx., f. 10-12: Daugeard, l.c., p. 101. f. 20.2. I donht whether I have ever seen a typical sperimen of this species (as distinet l'rom E. acutissima Lemm.). The figures cited are more distinetly fusiform than anything 1 have met with. Stein's spectmens have the apparance of being distorted, aud the rostrate tip does not serm correet. Dangeard's figure is better in this respect. but the tail is not nearly long enough to represent our forms. The only difference between this and the surveeding species is the slightly greater breadth and the wealth of paranyon rod. The ehlomplasts are often little oblong cushions.

> Buthena afterssima Lemmermann. (Pl. iv... fig. (i).

Lemmermann. Plankt. Sehwed. Gewass., p. 129. T. i.. t. 27. who gives long. 123. lat. 7. flag. long. 25μ. This is really a slender, more cylindrieal fom of
E. acus, and is the form enmmonly found in our waters. 1 inelude in it speecmens over 100μ long. and up to 8_{μ} in diameter.

Long. 110-150. lat. $7-8 \mu$. Guildtord (45, 146); Lismore (237, 241, 258, 259, 260, 295).

Var. parva, n.var. (Pl. ir., figs. 7, 8).
Forma brevior. Long. 5t-94, lat. (i-8, long. eaud. 4-16 μ. Lismore (237, こ58).

A short form, less than 100μ long, sometimes blunt ended behind.
Var. hyaliva, n.var.
Forma lyyalina, ehloroplastidibus nullis, nee stigmate.
Long. 150-200, lat. 8-10 . Rookwood: Guildford: Wyrallah: Lismore.
Euglena acus has also a var. hyalina Klebs..

Euglena piscigormis Klebs. (Pl. is.. figs. 9-11).

A small form, but one of the most active and frequently met with. In shape it varies somewhat, but generally it is shortly fusiform, with the likeness to a fish from which it derises its name, subrostrate in front and acutely pointed behind, without a tail. No amylaceous rods or granules. The specimen shown in Pl. iv., f. 11 is more globose in the centre than usual. It has probably just developed out of the globular regetative cell, the shape of whieli it still partly retains. The long flagellum enables this form to swim very rapidly. Compare Klebs. Flagellatenstudien, p. 302: Daugeard, l.c., P. 89. f. 16x; the latter gives dimensions long. 30. lat. $6-\bar{i} \mu$. It is doubtful, however, if his figure represents the type.

Long. $30-32:$ lat. $0-12 \mu$. ('asino (223): Lismore (291, 237. 258, 260 , 263, 295, 327, 344, 348).

Evglena texta (Dujardin) Semn. (Pl. iv., fig. 12).
Syn. C'rumenta terta Dujardin. f〉. 339. 1'l. r.. f. 8; Euglena rividis, pro parte, Stein. T. xx., t. 26-33; Trachelomomas torla Kelliontt, in Stoker, Infusoria of U.S., p. 87 , Pl. i.. f. 24.

The type is oral, somewhat attenuate in front. This speeies seeus to ue to be merely the vegetative rell which has increased in size and beeome motile with harlly any alteration in shape. It has nothing to do with Lepocinclis orum; and Trachelomomas torta Kellicett is simply the empty membrane. with the striae of both upper and lower face put in at the same time. This is a plankton form, generally to be found among weeds in fleep water. The ehloroplasts are tise-shaped, irregularly eireular or polygnal, and elose together; they are much more distinet than in any other species. Membrane smooth and covered with the usual fine spiral striae, with difficulty visible exeept on the ampty cell. Cytoplasm granular: a large stigma and long flagellum, movement aetive. Dnjardin gives long. 50μ.

Long. 50. lat. 40μ. Lismore (352).
Var. ofata, nwar. (Pl. ir., fig. 13).
Forma ovata, fronte attenuata, pone rotundata; ecteris ut in forma typiea.
Long. 38-50, lat. $25-32 \mu$. Duek Creek. Clyte: Lismore ($261,33 \bar{T}, 347$, 348).

The most eommon form here: distinctly ovate. net oval.

Var. obesa, n.sar. (Pl. iv., fig. 14).
Forma fere sphaerica, superne ruam levissime protucta.
long. 55, lat. 52μ. Lismore.
A rare form, almost exactly spherial, but produced a little above and notched at the opening of the pharynx.

Var. bullata, n.var. (Pl. iv.. figs. 15, 16).
Forma subglobosa, sursum in protuberationem conivam producta, pone bullà latissimâ instructa.

Long. 53-55, lat. 42- 46μ. lismore (328).
This form is globose but more produced above into a distinct conical protuherance, while below it is furnished with a low wide boss.

Euglena gittula, n.sp. (Pl. iv., fig. 17).
Euglena minima, fere sphaerica; fronte bulla conica instructa; pone rotmdata, intertum , uam levissime acuminata; flagello longo; eytoplasmate interdum granulato.

Long. 18-19, lat. 14-17, lat. ap. 2-3 μ. Guildford (146) ; Lismore.
Another free-swimming species, foud among weeds in deep water, smaller and rarer than Euglena texta and its forms. It is globular, with a conical projection in front. The choroplast scems to be in a single, thin, parietal, equatorial band: flagellmm long, movements lively.

Val. elonginta, nvar. (Fl. iv., fig. 18).
Forma modice oblongo-eylindracea, medio panlo ronstricta, sursum leviter attemata, fronte rotundata aruminata, postire globosa. Cytoplasmate hyalino; ia metio zona chlorophyllacea: flagelo longo; vesienlo emontractili subapicali; pone macula fusea magna (stigmate?) instructa.

Long. c. 19-22, lat. e. 10μ.
Secms to be an outgrowth of the type. In shape oblong-eylindrical, someWhat constrieted in the midde, narrowed in front and conical, running to a point, glohose behind. A subarical c.s. noted, and, in the centre of the posterior halt of the rell, a large pale-brown spot or globule which might he a stigma, thongh 1 have never before seen the stigma in such a position in Euglena. As in the type, there is a thin median parictal hand of chlorophyll. Flagellum long, movements very active.

Edglena vinima, m.sp. (l'l. iv., hig. 19).
Englena minima, lineari-elliptica, fronte acute-rotundata, postice rapide attenuata if aemminata; cauda mulla; chloroplastidibus parietalibus singulis. utringue pyrenoidibus magnis singulis; stigmate parvo; flagello longo; gramulis anylareis nullis nee bacmlis.

Long. 30-32, lat. 7μ. Lismore (293,347).
A minute bot most encrgetir species, swimming rapidly, turning and twist ing at a great rate. Euglena vividu is very distinct and dear-cut in appoarance, linear elliptie, acutely rounded in l'rout and rapidly narrowed behind into a sharp point, but without a tail: very much more resembling a fish than Euglena pisciformis. There is a single parietal laminar chloroplast (or two), with a large distinet beyenoid on each side at the posterior third. Stigma smatl; flagellum long; no paramylom rods or granules. Not pommon, but I have known gatherings where it was plentiful.

Euglena perilla, ns.sp. (Pl. if., figs. 20, 21).

Euglena mimima, "ylindracea, ntroque fine attemata, fronte conica, postice abrupte acuminata, caudâ minimâ instucta; baculis amylareis singulis maximis. Long. corp. 2(i-30, lat. 9-10; long. rilud. 3-4 . Lismore (260).
Another minute species, in shape something like E. rivida, but very different in details. The hody is eylindrieal, narrowed at each end, conical in front and abruptly aeminate behind, where there is a short tail. 'The chloroplasts sem to be seattered flakes, sometimes conneded with an irregular paramylum granule; a single, very large and stout paramylum rod in the rentre; flagellum?

Forma fiseiformis, mo latere tere recto, altern areuato, fronte attenuata, pone spinâ praedita, barolis amylaceis binis ralidis.

Long. © sp. 74, lat. 16; ip. long. 12μ. lismore (237,238).
Another very fish-ike form, longer than the type, attennate in front, furnished with a spine behind, one side nearly straight, the other ardhed. Two stont paranytum rods present. This variation was plentiful in gathering 238 ; both it and the type have stont membranes and are not metabolir.
? Elglena -1. (Pl. iv., fig. 23).

I have seen but one sperimen of the fom bere figurent, hat, althongla I was able to miserve atf details, I regand it with too mud suspieion to name or desribe. It is a minute form with a long flagellm, and very vivacions in its movements, as these small forms generally are. Several indications froint to the posibility of its being the zooid of Trachelomomas escaped from a broken lorica. This is not impossible, but I bave no knowletge is to whether Prachelomonas will remain artive under these conditions. The size and shape are exactly those uf Tr . ampullule Playf. ("The gemus Trachelomonas," j. 16, Pl. ii., f. 6); minfortanately, I have no note on the constitution of its zooid. The huge sprare, pale stigma, however, is more general in Trachehmomes; the subglobose nucleus at the hinder emil of the cell I have never observed in Euglena before, and it usually points to a loricate animalcule (compare the Rhizopoda) ; the chlorothyll rliffised throught the outer layer of cytoplasm is fresuent in Trachelomonas, 1ont rarely, if ever, found in Euglena. Compare Tr. splendita, Fl. vii., f. 1.

> Genus Pra ous Nitzactl.

Phak us pleuronectes (Muller) Duj. (Pl. r., fis. 1).
Long. corp. 36-56, lat. 27 -42: long, caud. $7-14 \mu$.
Auburn (68): Rookwood: Botany (91); Guildfowl (45. T丁); Casino; Wyrallah: Lismore (187, 258, 260, 295).

Dujardin, op. cit., p. 336, PI. ז.. f. 5, gives for dimensions, long. 40-45, lat. $22 \frac{1}{2}-30 \mu$, which is a fair average size.

Var. minutus, n.var. (Pl. r., fig. 2).
(Gnam forma typian dimidio minar. Long. 20-28, lat. 11-22 μ.
Botanic Gaddens, Sydney (3); Wyrallah: Lismore (ㄹ60).
Hatt as large only as the type and mueh less common.
Var. australis, n.var. (Pl. r., fig. 3).
Forma magis ovalis, duplo major. Long. 90. lat. 53μ. Guildfort (11t).

Very rare indeed; more regularly oval than the type and about twice the size. In all these forms the elloroplasts are minnte parictal dises seattered over the eentral part of the cell.

> Phaces hispideles (Eiehwald). (Pl. r.. fig. 4).

Long. (omp. 30. lat. 22: long. tand. 10μ. Lismore (328, 332).
Sun. Englena hispidalu Eichasald; C'hloroqueltis hispidula Stein, T'. xix., f. $41-4$.

Very rare here. If is without the overlap at the apex, but instead is furnished with a small papilla. The membrane is ornate with small teeth, pointing hackwards. disposed in Ingitudinal lines. The tail is straiglat.

Phaces moxilata var. suecica Lemmermann. (Pl. v., fig. 5).
Long. corp. $30-34$, lat. 23 - -2 . crass. 6 : long. eaud. $7-8 \mu$.
Casino: Wyrallalı; Lismore (241, 258, 350, 351).
Cf. C'lloropeltis monilata Stokes. p. 91. P'l. i., f. 30. This species is really a variant of Phacus hispidulus, the teeth heing replaced by granules as in many forms of Trachclomonas. I have not met with the type which is figured by Stokes with granules irregularly disposed. Not uneommon here. Compare Lemmermann (Plankt. Sehwed. (iewass. T. i., f. 15) who gives size as 36 $\times \underset{2}{2} \mu$.

Phaces longicatda (Ehr.) Dujarlin. (Pl. r., fig. (6).
Long. corp. 53-90), lat. 40-65: long. caud. (67-90 μ.
Botanic Gardens. Syduey (150): Guildtord (45) : Lismore (258, 295, 317, 350).

Euglenu longicunde Ehr. Our speeimens have sometimes very long tails. Dujardin only gives 92μ with the tail. This is the typical. flat form.

Var. Lemmermanu. (1Pl. r., fig. 7).
Long. corp. 62-80, lat. 40-54: long. catud. 20-40 μ.
Botanic Gardens, Sydney; Wyrallah: lismore (258, 260, 347).
Syn. Ph, pleuronectes, pro parte, in Bernard. Protococe. at Desm., lla xvi., 1. 561 only: This twisted rariety has a much shorter tail than the type. laemmermann has given it a name, hat camol lay my hand on the reference.

Long. 38-44. lat. $25-32 \mu$. Lismore (348, 351, 351).
Dujardin. l.c., p. 338: Stein. T. xix., f. 55-55. Compare C'yclanura orbicul-
 28. Rather rare, it may be recognived by the ridge ranaing longitudinally down one fare

Phacus minimus. ad P 'h. preuroncetem areedens, quasi auten e whis inaequalibus binis tumidis exstructis: muo lobo per longitudinem, altero transverse intlato: lobur longiore rauda brevi pracelito.

Long. corp. $25-32$ lat. $23-23$; Iong. (and. 4 -i μ. lismore (236, 237, 295).
A very small form something alter the style af phacus pleuroncetes, hat as if eonstructed of two inflated tobes juined down the eentral line. The lobes are unequal in size and shape. one being longitudinally intlated, the other tran-
versely. A short tail on the longer lobe. Membrane longitudinally striate, a large paramylum plate present, stigma distinct, Hagellum long. Very rare, but numerous in ecrtain gatherings.
Phacts hismoreasis, hasp. (lil. v., fig. 1t).

Phacus magrms, longe-ovatus, uno latere paullo infra apicen levissime excavatu- (deinde pharynge oriente ac flagello longo); sursum subacate roturdatus, inferne sensim sensimque attenuatus et in caudam longam acutissmam, obligue dispositan, protractus; membrama per longitudinem striata. A latere, conpore lineari, arcuato; lateribus parallelis; postire candâ lungâ, ad angulo rectol deflecta.

Long. cor 1). 54, lat. 18; long. cand. 40μ. Lismore ($260,344,348$).
A very distinct, well-marked speries, known only from Lismore. The body is tiat like a leat, not lenticular; long ovate, rounded above, and gradnally narrowed below into a very long sharp-pointed tail set obliquely (in front riew). The opening of the phargnx is situated in a little indentation on one side at some distance below the apex. From here also, of course, arises the long tlagellum. Membrane longitudinally striate; the chloroplasts small, oblong thakes lying along the striac. From the side, the body is seen to be somewhat arehed, the sides parallel and close together, the tail set at right angles.

Pilacus pyrubi (Elir.) Stein.
Euglena pyrum Ehr. I have never come across the exact European type as tigured by Stein, T. xix., f. 51-54, and other authors; bat the following forms of it are fomm here and always retain their distinctive characteristics.

Var. ovalucs, n.var. (Pl. 々., tig. 15).
Forma corpore ovato fere ovali, sursum late-rotundata, interne attemata, caula brevi acutissima hyalina pracdita.

Long. corp. 19, lat. 13; long. caud. 6μ. Botany (142) ; Lismore.
The type is somewhat narrowed above and excavated apparently below the apex on one side. Our nearest form is inite rounded above, in shape like a peg-top, slightly attenuated below, where it is turnished with a short hyaline sharp-pointed tail. There are 6 or 7 eoarse spiral costae rumning from left to right.

Var. australicus mihi. (lly. v., fig. 16).
Forma ad v. ocatum accelens sed crassior, et costis phuribus ornata.
Long. corp. 2?-32, lat. $18-24$, long. caud. $8-10 \mu$. Lismore (197,242).
Sym. Lepocinclis Steinii v. australica Playf., Biol. Richmond River, p. 141, Pl. viii., f. 6. A more inflated form of the foregoing, and with more numerous "ristae which are rounded also, not sharp-edged. End view eirenlar in both forms.

Var. rudicula, h.var. (Pl. r., fig. 17).
Forma corpore conico sursum truneato-rotundata, inferne attenuata. lateribus arenatis; postice cauda brevi praedita. A latere valde compressa, lateribus parallelis. Membrana costis rotundatis $1-7$ ornata.

Long. eorp. 24-35, lat. $15-26$, long. paud. It- 18μ.
Lismore (241, 258, 260, 285, 286).
The type and preceding forms are circular in cross section; this form, on the other hand, is strongly compressed. In shape conical, truncately rounded
above, narrowed gradually beneath, and furnished with at short sharp tail. Membrane with 4 i spiral corragations wound from left to right.

Gemus Lepocinclis Perty.
Lepocinclis owth (Ehr.) Lemm. (Text-lig. 3a).
Long. $23-30$, lat. $17-21$, long. caud. -10μ.
Guildtord; Lismore (242, 299).
Syn. E'uglena uram Ehr., C'hlaropeltis oram Stein. 'lhis species is rather rare here, I have only met with a few isolated specimens. In shape the type. atcording to stein ($\mathrm{T} . \mathrm{xix} .$, figs. $45,46,49,50$), is broadly oval-oblong with an anterior prominene and a short, pointed, triangular tail, wembrane finely striate spirally. Forms fomd hore are not intregnently more oblong than oval, and otten lack the anterior prominence, sometime the tail as well. I might remark that these are generic characteristies in Lepocinclis; it is no use tounding spectes on their presence or absence.

Var. Austhals, nvar. (Text-fig. $3 \mathrm{~b}, \mathrm{c}$).
Forma chlonga, ubigue rotundata, anteriore haud producta. postice catad obtusa berevi papillitormi, vel longa bacilitormi, instructa. Nembana dehicatissime spiraliter striatat.

Long. $23-30$, lat. $17-2$. long. caud. $2-11 \mu$.
(Guildtort (146) : Lismore (3:8).
A deritedly ublong form, rounded on all sides, with no anterior prominence in the spectmens so far noted, furuished behind with a short nipple-shaped tail, or mone rarely at long, blunt-ended. rou-tike onc. Hembrane finely triate spirally:

Var. costata, nlaur. (Text-fig. $3 d$).
Forna oblonga, ubique iontundata. prominentiat anteriori nulla nee cauda. Membrana costis spiralihns 9-10 ornata.

Long. '24, lat. 18μ. Guildford (60).
The obloug form, withont either anterior prominence or tail, though of conve these might be present, either one or both, in other speeimens, mombrame with 9-10 costae spirally wound.

Lamochiolis fesmomsis (Carter) Lemm. (Text-ig. Be-h).
Syn. Euglena fusiformis ('urter; E'uglena zonalis ('arter, arording to Kent. plo xx. f. 58 (atter ('arter). The name is somewhat miskading, as one experts an spindle-shaped cell to be muth honger in proportion to its width than this is. The type is inoally lenticular. pointed above and below, apparently without anterior prominence or caudal prolongation of amy sort. half an tong again as broad in one specimens, but these are not always typical. 'The tigure of buglena zonalis given by kent works out at $58 \times 30_{\mu}$; it is probably just a slighty more slender form than is typiral. Onr specimens. while being generally pointed beneath (sometimes even showing a minute papilla or catal prolongation) are very racely pointed above, having at least a flatemom apex (lat. $3-4 \mu$) and smbetimes a slight prominenee of the same width. Almont all forms of Lepocinclis lave a pair of discus-shaped paramblun plates closely appressed to the inner surlace of the cell-wall. In this species, hy comimal theposition of fresh material, these gradually grow round the cell, and meet with a vertieal line at each side: the eentral space of each plate fills up at the
same time, till only a horizontal line marks its position, and thus the two plates form a single broad hand of paramylum all round the middle of the cell. In front view this band shows as three faint lines simulating the equator and tropies on a geographical globe.

Text-fig. 3.
(a.) Lepocinctis ozum (Ehr.) Lemm. x 1200; (b.c.) L. oztum var. australis, n. var. $\mathrm{x} 1200 ;(d)$.$L . oz'un var. costata, n. var. \times 1: 00 ;$ (e.f.) L. fusiformis (Carter) Lemm. x 560 ; ($g . h$.) ditto, forma. x 800 ; (j.) dillo, var. caudata, n. var., face view. x 800; (k.) ditto, another specmen, $\frac{3}{\frac{3}{4}}$ face. x 800 ; (l.) L. rugulosa, n.sp. x 800 ; (m.) ditto, end view.

Long. 38-50. lat. 24 35, lat. apic. 3-1 4 . Auburn (135); Guildford; Botany (17) ; Rookwood; Botanic Gardens, Syiney (137); Lismore (233. 236, 241. 295).

Var. caudata, n.var. (Text-fig. $3 j, k$).
Forma magna, interne caurâ longâ, superne bullầ conicâ vel rectangulari praedita.

Long. corp. 32-43, lat. 21-25; long. caud. 10-16. lat. max. 4μ. Lismore (242, 236, 259. 295).

A rarer variety with a long tail and generally some sort of anterior prominence, conical or rectangular.

Lefocinclis Steinif Lemmermann.

This species has been erected by Lemmermann (Das Plankton sehwediseher (Gewasser, p. 123, notes) to include Stein's two figures of Lepocinclis (chloropeltis) ovom (T. xix., f. 47, 48) which are too slender to be typieal of that species. Stein, in his explanation of the plates, considers these as representing Euglena zonalis C'arter', hut Kent's figure of the latter (lnfusoria, T. xx., f. 58, after (arter) seems to forbid this identification. I do not know this peeies, which appears to be an oval form, finely striate longiturlinally, having some conneetion with the next form.

Var. suecics Lemmermam. (Il. vi.. fig. 1).
Long. rorp. 26, lat. 11 ; lat. ap. 3, long. cand. ad 3μ. Casino (189).
('f. Lemmermann, l.c., p. 123, T. i., f. 20 . He gives the size as $24.5-2(3 \mu$ long. and $9.5-12 \mu$ broad. According to his figure the membrane is finely striate longitudinally with a slight spiral twist.
(?) Lepocinclis sphagisicola Lemmermann. (Pl. vi., fig. 2).
Long. corp. 30-32, lat. 12; lat. ap. 3μ. Botany (109); Gnildford (114); Lismore (197).

Founded on a form hignred hy O. Zaeharias (Forseh. d. biol. Stat. z. Flon, x., p. 259, 'T. ii., f. 17) as L. fusiformis (Carter) Lemm. I have not seen a figure of this speries and therefore an mot at all certain about the identification of our specimens. The author (op. cit., p. 124) describes it as oval with eollarshaped, produred anterior end, and distinctly projeeting (?) hyaline hinder end. 33μ long and $12 \mu \mu$ broad. These dimensions and specifications seem to suit our forms very well.

Lepocinclis ot mbiformis, no.sp. (Pl. vi., figs, 3, 4).
Forma cembiformis, lateribus nune deplanatis nume areuatis, sursum modice producta truncata, inferne amminata.

Long. $30-34$, lat. $8-11$; lat. ap. 8.3μ. Lismore (2 25).
This spefies inchdes certain somewhat irregular boat-shaped forms, sides either hattened or arched; body a little produced above, truncate: afuminate behind. Membrane striate longitudinally?

Lepocinclis capitata, misp. (l'l. vi., fige. 5, 6).
Forma angusto fusiformis, superne et interne paene aegualiter attenata; anteriore produeta truneata, maxime rapitata; postice in caudan brevem acutam protracta. Membrana per longitudinem costata, eostis e. $6-8$ visibilibus.

Long. $45-60$, lat, $10-14$, lat. al. 4μ. Botany (92,142) ; Botanie Gardens, Sydney (150) ; Lismore (225, 2tio, 299).

A very pretty and distinct species characterised hy its slender. regularly tusifom body, produed above into a trmeately-ronded eapitate prominenee, and below into a short tail which continues the lines of the booly. The membrane is costate longitudinally, 6-8 eostac showing.
Lepocincols costata, n.sp. (llo. vi., figh. 7, S).

Forma lateerhiptica, fere owalis; sursmm levissime dephata, hand producta; inferne eauda brevissimâ triangulari pracdita. Jembrana eostis 8-10 per fongitudinem dispositis wrnata.

Long. corp. 26, lat. $10-12$, lat. ap. 3, long. caud. $3-4 \mu$. Auburn (135); Guildford (146) ; Wyrallah; Lismore (236, 259, 293).

A broadly elliptical, practically oval form, withont any anterior prominence (none observed at any rate), but slightly Hattened in tront; behind furnished with a very short triangular tail; membrane costate longitudinally, with 8-10 costae visible.

Var. obess, n.var. (Pl. vi., fig. 9).
Forma prae longitudinem erassior.
Long. corp. 26 , lat. $14-15$, lat. ap. 3, long. eaud. 3- 4μ. Lismore (242, 236. 237).

Lepocinclis panillfformis, m.sp. (1 ’. vi., fige. 10 , 11).
Forma minima, corpore conico, firunte late rotundata, prominentiâ nulâa; postice attenuata, raudâ minutâ praedita.

Long. 20, lat. 8μ. Guildford (114) ; Putt's Ilill (113).
A small Lepocinclis, somewhat eonical in general shape, broadly rounded in front, narrowed behind and furnished with a short tail, no anterior prominence noted. A rare species.

Lepocinclis rugulona, n.sp. ('Text-fig. 3l, m).
Forma eylindracea, polis late-rotumdatis, lateribus parallelis; membrana striis (vel costis) obliquis spiralibus ornata. A vertice rirenlata, margine rugulosa.

Long. $: 35$, lat. 15μ. Rookwood.
A small cylindriwal form with straight sides and broally rounded ents. Membrane striate obliquely and spirally either witb coarse striae or fine costal. End view rireular, the striae showing as about 15 small corrugations on the margin. I am a little doubtful about the grenus, as 1 have no note on the cellcontents. The flagellum figured, however, is Englenoid and not as in Stphenomonas, and the motion "continually revolving" agrees with Lepocinclis. Noted in quantity from Rookwood in 1910.

Genus Trachelomonas Elir.
A detailed account of the principal types of this genus occurring in our waters has already been given in "The Gemns Trachelomonas" (These Proceedings, 1915). Here it will only be necessary, therefore, to describe forms noted since then, and to confirm those of rare weeurrence by new records.

Trachelomonas volyocina var. planktonica, n.var. (Pl. vi., fig. 12).
Forma collo exteriore distincto instructa. A listinct neck ronnd the orifice is very rare in this speeies. Only noted twice, in both eases from watersupply samples.

Diam. 15; coll. lat. 3, alt. 2μ. Brisbane Water Supply; Sydney Water Supply (115).

Var. scabra, n.var. (Pl. vi., fig. 13).
Forma collo brevi; membrana aspera. The membrane is usually very smooth and shiny; in this form it is slightly rough with minute irregularities, not regularly granulate; a short neck present.

Diam. 12μ. Guildford (45).

Var. coronetra, n.var. (Pl. vi., fig. 14).
Forma ore membranâ lata circumeincto. A rery pretty aud distinct form. The lorica does not seem to be always perfeetly spherical, but produced above a little. The orifice is surroundel ly a delicate and somewhat irregular, membranons collarette which stands out at a wide angle, edges snooth. In oue specimen the cbloroplacts were very regular, distinet and strongly markent. They were of the nsual Euglemoid type, viz, small eireular dises, but this is the only occasion on which I have noted this in Trachelomonas. In this genus the chlorophyll is arranged in three different ways: (1) apparently regularly diffused through the outer layer of eytoplasm; (2) disposed in a few, large, oval dises. widely separated and often more or less of irregular shape; (3) irregularly reticulated in pateles with connecting threads.

Diam. 16. coll. diau. 10μ. Lismore (365).
Var. petstloss, nivall. (Plo vi., fig. 15).
Forma plerumque lyalina, collo nullo; membrana pustulis latis pulviniformibus, minute granulatis, vestita.

Diam. 12μ. Sydney; Lismore.
lorica generally hyaline and covered with broad dise-shaped pustules which are themselves minutely grannlate. About 6 pustules aeross the face.

Trachelomonas botanica var. bohealis, hivar. (Pl. vi., figr. 16).
Furma modice oblonga, collo lato divergente praedita; membrana punetata. Long. 36, lat. 301 ; lat. oris 8, papill. 4μ. Lismore (303).
A more oblong form than the type, with a wide dentate collarette romed the oritiee. The distinguishing mark of this speeies is the minute papilla at the hinder end. Ouly known hitherto from Sylney-antea, 1915. p. 9, Pl. i.. f. 9.

Trachelomonds ovala Playfair. (Ply vi., ligs. 1i, 18).
Long. 23-35. lat. 19-23 . Murwillumbah; Lismore (328, 354).
Out of weeds in a surfare-water drainage diteh at Nurwillumbah in quantity. It is a form rapidly developed where there is a eurrent of water. The lorica is thim. smooth, gencrally colourless or almost so, and transparent. The figures show the ehlorophyll disposed either in regular dises, or irregular reticulations.

Trachelomonas thenes Markell, format. (Pl. vi.. fig. 19).
Leng. corp. 27, lat. 18; coll. lat. 4, alt. 3μ. Lismore (28.5).
Cf. Makell, On 1reshwater lnfusoria, Trans. N.Z. Institute, wol. xx., N゙.... 1887. Tr. teres, type, is long owal, with a slight eollar romd the orifice, membrane smooth-the author gives long. 35μ. This form is not quite typieal, being more oblong in outline. Four different nerks are given which have been noted in this form.

Trachelomonas bella var. australeis Playil. (Pl. vi., fig. 20).
Long. cory. 40. lat. 23: coll. Iong. 8, lat. 6 μ. C'entennial Park, Sydney (I33).
Only previnusly noted from lismore. This specimen makes our form practically equal in size to Stein"s type $(50 \times 21 \mu)$, but the shape is different.

Trachelomovas oblonea lemmermann. (Fl. vi., fig. '21).
Noted both with and without a neek. This is what I take to be Lemmermann's type, thot 1 have not seen the tigure.

Long. 17, lat. 12; coll. long. 2!, lat. 14μ. Centennial Park (133).
Trachelomoxas pulcherbida var. minor Playt. (Pl. vi., fig. 20).
Long. 17-19, lat. 10μ. Plenty in the swampy corner of a fieh in eompany with Tr. pusilla Playt. Lismure (344).

Trachelomonas Volzif var. sulcata, n.var. (Plo. vi., fiy. 23).
Forma parte anteriore sulcis $10-12$ ($5-6$ visis) per longitudinem dispositis ornata.

Lung. 31-32, lat. © ${ }^{2}$: lat. coll. 3, alt. $1_{2}^{1 \frac{1}{2}}$. Butany (108).
A form having the shape of the type, but with 5 or is sulcae running down the face as tar as the centre. Var. pellucida and var. cylindracea, previously known trom Sydney only, are here reeorded from Lismore also (328, 358).

Trachelomonas ampuldula var. Major Playt. (Pl. vi., fig. e4).
Forma srobiculata, lateribus minime angulatis, postice haud mannillata.
Long. $3+-36$, lat. $17-19$; eoll. alt. $2-3$, lat. 5μ. Lismore (344).
This large form of Tr. ampullula is not always retuse and mammillate as previously described (anteu, 1915, p. 17, Pl. ii., f. 7). In this case also the membrane was coarsely but faintly scrobieulate, and the general outline only very slightly angular.

Var. GRacilis, n.var. (Pl. vi., fig. 25).
Forma major sed gracilior, lateribus levissime armatis, haud angulatis.
Long. 40, lat. 15 ; coll. alt. 3. lat. 4μ. Guildford (70).
A slender form of var. major, with arched, not angular sides, the mammillate end very distimet.

Var. elliptica, n.var. (Pl. vi., fig. 26).
Forma parra, gracillima, eorpore pertecte elliptico, pone aente rotundato, lateribus haud angulatis.

Long. $25 \frac{1}{2}$, lat. $10 \frac{1}{2}$; colll. alt. $\overbrace{2}^{2}$, lat. $2 \frac{1}{2} \mu$. Lismore (350).
A very graceful elliptical form, acutely rounded hehind and absolutely without any angularity. (lear pale vellow membrane.

Trachelomonas clayata var. subabmata Playit. (Pl. vi., fig. ㄹit).
Long. 58, lat. 20: eoll. alt. 9, lat. 73μ. Lismore (351).
A very rare and curious species, only known previously from the Botanie Gardens, Sydney, but now reeorded from Lismore. The surface of the loriea was reticulate, however, not scrobiculate. I have seen but 3 specimens of this species and only 2 of var. subarmata; it is interesting to note that, however lizarre in appearance and rare in oecurrence a form may be, it will keep its distinguishing eharacteristics wherever it is found.

Trachelomonas eurystoma var. parva, n.var. (Pl. vi., fig. 28).

Forma quam typieâ dimidio minur, magis rotunda, minime ovata, membrana glabra, striis nullis nee punetis.

Long. $13 \frac{1}{2}$, lat. 11 ; coll. lat. 4μ. Lismore (197).
A small rounded form, about balf the size of the type, hardly ovate at all, obtained from weeds in the liclmond River. The membrane is smooth, not striate, and the ring-neck not fluted.

Trachelomonas (oronati, n.sp. (Fl. vi.. figs. 29. 30).
Forma oralis, vel ovata pone attenuata; superne collo latissimo divergente, margine cuspilato, coronata; interne candâ brevissimâ rectangulari bidentata praedita.

Long. 36-35. lat. $20-21$; coll. alt. $2-4$, lat. 12μ. Lismore (328).
The lorica is oval, or ovate narrowed posteriorly. Ahove, turnished with a wide outstanding collarette in form of a crown, with a cuspidate margin; below, at very short, square. biflentate tail. Membrane smooth or very slightly roughened.

Trachelomonas splexdida, 11.sp. (Pl. vii., fig. 1).
Lorica magna, elliptica; sursum collo quadrato, ore everso, interne caudâ brevissimâ subreetangulari; membrana granulata.

Long. corp. 40, lat. 20 ; coll. alt. 6, lat. 5; eand. long. 6, lat. $1 \frac{1}{2} \mu$. Lismore (365).

A large haudsome species with a long-oval or elliptical borly, square neck with everted rim, and short, subrectangular, stubly tail. Hemhrane dark yellow, granulate. The zooid was alive and active; the chlorophyll seemed to be diffused throngh the outer layer of the cytophasm. The latter must have been very translucent, for in spite of the vellow colour and grannles of the loriea, the internal organization of the zooid could easily be seen, which is rare in this genus.

This is one of my very latest finds; I thought I had exhausted the possibilities of the district, but the number and variety of types in Trachelomonas seem to he infinite.

Trachelomoxas hispida (Perty) Stein.
Long. s.sp. 32-50, lat. s.sp. 23-33; spin. long. 4-6 μ. Botany (92, 14:) ; lismore (333).

Of much larger dimensions than the type which is aot over $30 \times 20 \mu$ without spines; and spines only 2μ long.

Trachelomoxis bacillifera Playt.
long. s.pp. 35, lat. 32: spin. hong. 2μ. lismore (347).
Hitherto known only from Sydney; lorica almost sherieal and very dark reddish-yellow in colour.

Var. minima Playt. (l?. vii.. fig. 2).
Long. s.jp. $12 \frac{1}{2}$, lat. 101 ; spin. long. $2^{2} \mu$. Lismore.
Only about halt the size of the speeimens previnusly recorded (Gemus Trachelomonas, 1 . 2). It should he noted that in all the forms of Tr. bacillifera figured there, the spines are too fine, they should be mudh roarser, and not so many on the lorica, vet still fuite "lose together.

Var. globllosa, n.war. (Pl. vii., fig. 3).
Forma spbacrica minuta. Diam. s. spin. 11μ. Brisbane.

A minute spherical form of a pale bisenit colour from the Brishane watersupply. Such a tint is unusnal in this species, all its forms being very dark coloured.

Trachelomonas armata var. Glabra Playf. (Pl. vii.. fig. 4).
Forma corpore ovato subgloboso nee oblongo.
Long. eorp. 32, lat, 26μ. Lismore (365).
This specimen is the shape of Ehrenberg's type ovate subglonose, slightly narrower in front than behind.- quite smooth, however, except for the posterior ring of awns. The ehloroplasts and "ytoplasm were reticulate.

Var. longispina Playf.
Long. corp. 4?, lat. 32; spin. poster. long. 17, lat. max. $4-\mu$. Lismore.
A fine specimen noted alive. The lorica was hispid with fine short spines (2μ long) and was armed hehind with a ring of 10 long awns. Freviously recorded only from Sydney and with no more than 4 posterior awns. For figure take that of var. duplex (Pl. vii., f. 5) without the subapical ring of awns. 'This is the first specimen of Tr. armata which agreed with Ehrenberg's type in being "hispid."

Var. duplex Playf. (Pl. vii., fig. 5).
Forma spinis brevibus hispida (nee granulata) ; aeuleis anterioribus aeutis nee bacillaribus; aculeis posterioribus longissimis.

Long. corp. 45, lat. 35 ; acul. poster. long. 24μ. Lismore (332, 347, 365).
Var. duplex is rery rare, as yet only found at lismore. In this form the loriea is hispid with fine short spines, and not granulate. The awns of the anterior series are acute, not bacillar.

Trachelomonas lismorensis var. mirableis Playt.
Diam. corp. s. spin. 25-26; spin. long. $5-6 \mu$. Lismore (260, 261, 351).
My original description of this form gave only the end view. I can now state that the loriea is globose, differing in this from other forms of the species. Indeed it is doubtful if it should be placed under Tr. lismorensis, as the spines are characteristic. stout, conieal, very elosely set at equal distances apart and not in rows. $7-8$ visible in a quadrant of the eircumference, the outer half hyaline. (Pl. vii., f. 22).

Var. biseriata Playf.
Diam. earp. s.sp. 15; sp. Iong 3μ. Wyrallah (310) ; Byron Bay; Lismore (311, 328, 344, 347).

All the varieties of this species are remarkably regular in size and shape. This form is now confirmed from several loealities in the district.

Trachelomonas paucispinosa, n.sp. (Pl. vii., fig. 6).
Lorica subglobosa ubique rotundata; eollo nullo; membrana glabra lutea, spinis brevibus validis acutis sparsis armata.

Long. s. spin. $17 \frac{1}{2}$, lat. 16 ; spin. long. e. $2 \frac{1}{2} \mu$. Lismore (261).
A smooth subglobose or very broadly oval form, armed with short, sharp. stout spines, very wido apart-only 5 or 6 are visible at each side. A very rare species.

Trachelomonas scabra var. cordata Playf. Forma. (Pl. vii., fig. 7).
Forma magis ovata, interne magis angustata, membrana tere glabra.
Long. 20, lat. 15μ. Lismore (351).
A more ovate form than that described before and more narrowed below. Membrane only very slightly rough with low scattered thiekenings here and there (antea, 1915, t. 29. Fil. iv., f. 11).

Trachelomoxas acuminata var. amphora Playt. (Pl. vii., fig. 8).
Long. 38, lat. 23 ; coll. alt. 8, lat. 6 ; caud. long. 10μ. Lismore (347).
Described wriginally from Parramatta, now confirmed from Lismore. The zooid was alive and artive, the chlorophyll seemed to be diffured.

> Tramelomonas urceolata Stokes. (Pl. vii., fig. 9).

Long. $50-57$, lat. $23-28$; roll. alt. 4-6; raud. long. $10-17 \mu$. Lismore (347, 348. 352) .

Merely a single sperimen, not too like the type, was previously noted from Parramatta (Sydney), but I have now to record typical specimens alive in some quantity from this district. In most of the tailed forms the zooid is free within the lorica, but weasionally the body is adherent. Such are generally found in plankton gatherings and I would remark that it is mot neeessary to go for plankton to large hodies of water: the plankton of ponds is manally extremely varied and interesting.

Trachelomonas Girardiana mili.

Syn. Tr. urceolata var. Girardiana Playf. (These Procedings, 1915, p. 32, Pl. v., f. 7, 8). This form is really not in the least like Tr. urceolata and always retains its very characteristic appearance so that 1 think it should stand as a type.

Var. glabra, h.var. (Pl. vii., fig. 10).
Lung. 36-40. lat. 20-22; woll. alt. 4-6, lat. 6; caud. long. 5-10 μ. Lismore (347).

Membrane smooth in these specimens, not seabrous as formerly. At present known only from Lismore.

> Trachelomonas elegantissima (G. A. West) Flayt.

Arranged, but donhtfully, by G. S. West as (?) Dinobryon elegantissimum in Algae of the Yan Yean Reservoir, p. 81 , tig. 10 k ; I placed this species under Trachelomomas on acoount ot the resemblance of a similar form to Tr . napiformis. The zooid, however, which alone can decide the genus, has not yet heen noterl; and indeed it is not at all unlikely that it may turn out to be a spepies of cialpingueca (antea, 1915. p. 32, f. 12).
'Trachelomonas hfsperia, n.ip. (Pl. vii., fig. 11).
Forma at Tr. elegantissimam var. ocatam valde arrendens, sed stipite brevissima; corpore ovato, subgloboso, utringue rutundato, inferne apuminato, in stipitom brevissimam producto, superne collo rectangulari, ore everso.

Long. corp. 14, lat. 8; coll. alt. 4 , lat. 4 ; stip. long. ${ }^{-} \mu$. Pertll Water Supply. W. Australia.

A good many speeimens of this form were foum in a sample kindly sent me by the engincer of the Perth (W.A.) Water Supply. It is very like Tr. elegantissima var. ocata from the Sylney Water Supply, but with a very short stalk. The lorica is ovate, subglobose with rounded sides, narrowed helow into a short stipes. Above there is a square neek with everted rim. Membrane smooth, that of the body stont, especially above, pale brown; but, in every case, that of the neck was hyaline and very delicate, evidently a later growth. One specimeu noted was entirely hyaline, pellueid and thin-walled like a Dinobryon.
Trachelomoxas vapiformis var. brewicollis, n.var. (Pl. vii., figs. 12-14).
Forma paullo magis ovata, collo hreviore ore valde everso.
Long. 4853 (corp. 36-38), lat. 24-25; roll. alt. 5-6, lat. (5-11; raud. $10-14 \mu$. Lismore ($322,333,347$).

A more perfeetly ovate form of the type with shorter neck and accentuated rim. A new record for this speries.
'Trachelomonis (uneata, now. (Pl. vii.. fig. 15).
Lorica trapezoidea, angulis lateralibus tere rectis; inferne enneata, lateribus planis al caudan convergentibus; sursum subtriangularis, lateribus convexis in collum sensim sensimque adscendentibus, wre everso; membrana hyalina scabra.

Long. 50, lat. 20 ; cotl. lat. 6; caud. long. 14μ. Lismore (258).
Lorica somewhat trapezoid with lateral angles almost square. Greatest breadth about 1-3rol from the month. From the lateral angles downward, cuneate, with flat sides ronverging to the tail. Above subtriangular, sides convex, gradually rising into the narrowed neck with everted rim; membrane irregularly roughened.

Trachelomonas mibberoza rar. loxghollis, n.val. (Pl. vii., fig. 16).

Lorica corpore multo compresso; collo longissimo, lateribus parallelis.
Long. 54, lat. 26; coll. alt. e. 18, lat. 6; caud. long. r. 24μ. Lismore (258).
An elegant form, with the body of the lorica mueh compressed anteroposteriorly, and with a very long neek. This form and the previous one are both uncommon: they were plentiful, however, alive in one gathering.

Var. rumids, n.var. (Pl. vii., fig. 17).
Lorica corpore prae longitudinem multo majore; collo vix formato; canda minutissima.

Long. 53, lat. 39; lat. oris 7 : ramd. leng. 3μ. Lismere.
A form in which the hody of the loriea is very large compared with the total length. Above, it is gradually narrowed to the month withont any distinct neck; tail quite minnte. That polymorphism in these and similar organisms is largely a matter of the relative development of component parts, is well exemplified in this species. This form, var. longicollis, and the type (long. 53, 54, 56μ respectively) are all abont the same sizo and the characteristic shapes are merely the result of the proportionate growth of the body, neck and tail of the loriora.

Trachelononas rotundata mihi. (Pl. rii., fig. 18).
I'r. gibberosa var. rotundata liayt., untea, 1915, p. 35, (var. rotunda, by a stip of the pen, in the explanation of the plates, p. 41).

Long. 40 (corp. 25); lat. 25; coll. alt. 6, lat. 6; caul. long. ! μ. hismore.

This form retains its shape well and is not at all like $7 r$. gibberosa. I arect it here as a separate type. Speeimens a little targer than those from Parramatta; a new record for the species.

Tbachelomonas lanceolata, in.ep. (Pl. vil.. fige. 19. 2d (1).
Loriea lanceolata, lateribus rotundatis; sursum collo quadrato; inferne sensim sensimplue attenuata, acuminata; a latere interdum compressa. Membrana glabra.

Long. 30, lat. 1ᄅ-13: coll. alt. 4, lat. 5 - 6μ. l'arramatta (136); Lismore (258).

Lanceolate with romded sides, above convergiug to the wide stuare neck, below gradually rumning down to a point; membrane smooth. The Parramatla specimen was shightly compressed in side view.

> Trachelomoxas spiralis, n.sp. (Pl. vii., fig. 2l).
larica elliptica, inferne acmminata, lateribus acqualiter arcuatis, sursm rollo, lato, humili instructa. Membrana hyalina glabra, tenuissima, torta; costis spiralibus 3-4 ornatis.

Long. 36, lat. 21 ; coll. alt. 3. lat. G_{μ}. Botany (151).
Lorica elliptic, pointed below, sides evenly arehed, neek wide and low; membrane very thin, lyaline and with the delieate matt or frosted surface common in this class of Trachelomonas. It belongs to the stipitate group, though it has no tail. Three or four ridges run spirally from end to end, the loricit having probably been an adherent form which hats got twisted in growth. The tail itself in these forms is due to twisting, as a close examination will often sbow.

Fam. ASTASIACEAE.

> Genus Menoidium Perty.

Menoidum pellucidum Perty. (1^{\prime} l. viii., fig. 1).

Mexoidiuar inflatum mili. (Pl. viii., fig. 22).
Forma plana. levissime areuata, tronte et postice aleuta; rostro minuto angustissimo; eytoplasmate plerumpue homogeneo, granulis amylaceis millis.

Lons. 50-63, lat. 10-12 μ. Coogee; Botany (93) : Gnildford (60); Sydney Water Supply.

Syn. if. pellucidum var. inflatum Playt'. Flankt. Sydney Water. p. 547. More common round Sydney than any other species, not noted yet at Lismore. It is flat like a piece of card, acutely pointed at eaeh end, under side nearly tlat, upper arehed but not always as much as figured. Rostrum reduced to a mero spine. but from Stein's figures it seems likely that this is only the luwer edge of the rostrum, the mper edge growing out of the body.. a little higher up, later on. Cyloplasm gencrally homogencous, without granules.

Mexolbigh actrissimum, n.sp. (Pl, viii., fig. 3).
Forma longissima, angustissima; fronte truncata, haud rostrata; pone longe protracta, acutissima: latere inferiore f'ere recto. superiore guam levissime arenato; pharynge distincto; stigmate minutissimo; baeillis amylareis longis angustis in serie singula disposilis ornata.

Long. 200, lat. 812 , ap. 5μ. Lismore: Wyrallah.
A very rare Menoidium, but noted from two distinct localities. The body is straight and very long in proportion to the breadth. No distinct rostrum in front, where it is merely narrow and truncate, hut the formation and flagellum are as in Menoidium. The under side is nearly flat, the upper very slightly arched, the sides diverging slightly from the snout to the anterior fuarter, from there gradually conserging to the extremely narrow and sharp-pointed hinder end. Cytoŋlasm hyaline, homogeneous, transparent, allowing a clear view of the bag-shaped pharynx with which are connected a minnte e.r. and red stigma. A single series of long thin paramylum rods along the upper side. mueh more regular than is usual in this genus.

Mexoidium gracile, n.spl. (Pl. viii., figs. 4, 5).

Forma magna, corpore gracili, arcuato, postice acuminato. fronle rostralo; cytoplasmate plerumque granulato ef bacillis amylaceis ornato.

Long. 72-100, lat. 6-8: marg. infer. alt. 6-12 μ. Botanic: Gardens, Sydney (150) : Lismore ($225,260,350$).

Nearly twice as long as the type. Body well-arched, very slender, acuminate but not acute behind, rostrate in front. Cytoplasm generally granulate and with a few paramylum rods in front.

Menomiem incurvom Frescmins. (Pl. viii., fig. 6).
Syn. 11. pellucidum var. incurrum, Riol. Richmond River. 1). 141. A very snall form and rare, thongh there were plenty in gathering 188 ont of weeds in the Richmond River. Broadest in front where it is abruptly truncate, without rostrum, and very active in its movements, darting and twisting about incessantly; there is very little in its appearance to connect it with this genus.

Cf. Klebs, Organ. einig. Flag.; and Daugeard, Recherel. s. 1. Euglen., p. 151. f. 46 ; the latter gives $25 \times 7 \mu$ as the size.

Long. 16, lat. 5μ. Lismore (188,358).
Menotdium tortuosum (Stokes) Senn. (Pl. viii., fig. 7).
Syn. Atractonenia tortuosum Stokes, Infus. U.S. p. 92, Pl. i., f. 31. A narrow spiral form, rostrate in frout, aeutely pointed behind; eytoplasm homogeneous, with a few paramylum granules or short rods. It moves in a spiral manner, unlike other members of the genus, which either revolve slowly round the long axis or bore their way through the water, rocking from side to side in a manner pectoliarly their own.

Long. c. 22 , lat. 5μ. Stokes gives long. $20-40 \mu$. Lismore (350,365).
Genus Distigma Ehr.
Distigma proteus rar. clavatum mihi. (Pl. viii., fig. 8).
Syn. Menoidium pellucidum var. clavatum Playf., Biol. Richnond River, p. 142. Cf. Semn, Flagellata, pp. 177, 178, f. 128b.

Long. 40-84, lat. $6-12 \mu$. Lismore (187, 188, 365).
Formae. (Pl. ix., figs. 10-13).
These forms have all the appearance of being a distinct species of Peranema, but I believe them to be young forms of the preceding.

Long. 18-44, lat. max. 8-12 μ. Auburn (139); Pott's Hill (121); Lis. more (258).

Genus Astasia Dujardin.
Astasia margaritifera Schmarda. (Pl. viii., fig. 9).
I am doubtful about the identification of this infusorian, having never observed it in the free-swimming form figured by Senv. l.c., p. 177, f. 128. Only when travelling with its characteristic metabolie novement does it draw one's attention, and so 1 represent it here. The flagellum is very often (generally?) wanting: cytoplasm granulate. On one oceasion half a dozen individuals were found living parasitically within the tissues of a living specimen of the Turbellaria; they were devoid of a tlagellum and worked themselves to and fro with their usnal metabolic progression.

Long. ․ . $20-50 \mu$. Auburn (139) ; Pott's Hill (121) ; Lismore (312).
Genus sphexomonas Stein.
Sphexomonas quabravglabis var. cruchformis, hevar: (Pl. viii, fig. 10).
Ovate, printed in tront; with four, more or Jess devated, longitudinal ridges each eontaining at the summit a series of gramular markings. The European form (type) is rhomboidal in outline, with rounded lateral angles; in end view alnost siguare, with slighty cuspidate sides and sharp angles. Ours are cruciform with deeply excavated sides and romed tips to the arms. Rare. For the type see Stein, T. xxiii., f. 49-53; Kent, 'T. xxix., f. 21-23.

Long. $24-27$, lat. $10-13 \mu$. Rookwond (107) : Lismure ($297,345,347$).
Sphenomonas australis, nonp. (Pl. viii.. fig. 11).
(ellnae prriformes, sursm attenuatae subaentae: inferne rotundatae; lateribus armatis; rugis 6 (visis 4) gramulatis per lougitudinem dispositis ornata. Vertice visae hexagonae lateribus emarginatis.

Long. $25-26$, lat. $10-12 \mu$. Rookwood: Potanie Gardens, Sydney (156); Lismore (312).

This species is more frequently met with here than any other of the genus. It is drop-shaped, narrowed and subacute in front, rounded behind. End view hexagonal, as the body is mmate with 6 longitudinal gramulate ridges. The hinder part of the hody is generally a solid hall of some perfectly transparent highly refringent substance (lencosin ? or paramylum ?). So homogencous and pellueid is it that the granules on the under side can be seen. magnified, throngh it.

Var. blapplea, n.rar. (Pl. viii., fig. 12).
Collulae longe-ovatae paene ellipticae, fronte amminatae, postiee rotundatae, lateribus levissime arenatis. Dimensiones ut in t. typica. Rownomed (107).

A much less common elliptic form of similar size and characteristics to the type.

Var. riombolda, n.var. (Fl . viii., fig. 13).
Cellulae rhomboidear, lateribus angulatis, utroque polo acuminatae.
Lenng. ad. 30, lat. 16μ. Guildford (45).
The eefls are rhomboidal, sides angled, ands subaeutely rounded.

Sphenomonas terfas (Stein) Klebs. (Pl. viii., figs. 14, 15).
Syn. Atractonema teres Stein, op. cit., 'T. xxiii., f. 35-41; ('lostenema socialis Stokes, op. cit., p. 112, Pl. ii., f. 15. Almost, it not puite, as common as the foregoing species. Semn, l.c., p. 177, f. 1280, fignres it with only an incipient trailer (the seemulary tlagellum), but I find specimens with a trailer twise the length of the body, and young forms have no seeond Hagellum at all. The fact is that the trailer develops later than the tone flagellom. The latter is of the J'eranema-type. stont at the hase and tailing off to the tip. It is held motionless for the most part, straight out in front; only the tip is in movement. Sometimes the extreme end of the cell is constricted into a little stubby tail.

Long. 20 25. lat. 6-12 μ. Auhurn (139) : Limme (298, 312, 345).
Var. pyrhormas, n.vat (Pl. viii., figs. 16, 17).
Cellulae ut in t. typica rugis mullis, sed aritomibus, interdum caudat brevi subtriangulari instructae.

Long. 16-2t, lat. $9-20 \mu$. Auburn (140); Botany (91); Lismore (188, 298, 312).

Smooth and without ridges as in the typical form, but in shape pyriform, with or without a short broad tail.

It is probable that syb. teres is a young form or at least a polymorphic form of sph. australis. I have noted faint longitudinal lines down the borly, which seemed to indicate the formation of ridges. In Pl. viii., fig. 18, is shown an intermediate form in which the ridges are plainly visible, but the chararteristie marginal gramlation was not present and the rell therefore indined to sph. teres.

Sphenomoxas triquetra, i.sp. (Pl. viii., fig. 20).

Cellulae inaeŗualiter ovatae, utrofue polo acuminatae; a vertice visate inaequaliter triquetrae.

Long. 30, lat. 20μ. Rookwood; Botanie Gardens (156).
Irregularly ovate in shape, pointed at each end, with a ridge ruming spirally down the face; enal view irregularly triangular with hollow sides and ronnded angles.

Var. cuneata, n.var. (I'l. viii., fig. 19).
Cellnhae inaequaliter cmeata, fronte rotundatae, postice attennatae, acuminatae; a vertice visae inaequaliter triquetrae.

Long. 30, lat. $15 \mu_{\mathrm{s}}$ Guildford.
Somewhat cuneate in shape, broadest in front, where it is rounded oti, gradually narrowed to a subaente point behind. A longitudinal ridge down the fire; end view irregularly triangular with hollow sides and rom

Sphenomonas excatata, m.ep. (Pl. ix., fig. 1).
Cellulae oblongae, subreetangulares; extremitatilus lateribusçue arcuatis; utrocue poló bullâ concâ pracditae; rugis 3, mediano spirale, per longitudinem dispositis instructae; flagello rectu. A vertice visae subrectangulares, utringue rugis altis 3 . A latere late-finsiformes.

Long. 32, lat. 21, crasc. © 1tip. Lismore (358).
Subrectangular, ends and sides arched; at each pole a coniral boss, from the anterior part of which the straight thick Peranema flagellum springs. No
trailer noted. Three deeply excavated longitudinal ridges run down both the upper and under face, the central one somewhat spiral. End view subreetangular, with 3 strongly marked ridges front and hack, the other two sides slightly hollowed. Side view broadly fusiform or lentieular. Membrane smooth; cytoplasm hyaline. transparent, homogeneons. No paramylum, uu granutation of the ridges.

> Sphenomonds spirmis, n.sp. (Fl. ix., fig. 2).

Cellulae ambitu late-fusiformes. superne acutae, inferne obtusae; rugis spitalibus 5-6 paene transverse dispositis alte excavatae; membrana glabra; cytoplasmate retracto. gramulato, hyalino: flagello recto, crasso, interdum seeundo retrorsum directo.

Long. 40, lat. $3 f_{\mu}$. Botanic Gardens, Sydney (156).
Broadly lenticula in general outline, pronted above, obtuse below. deeply scored by 5 or 6 spiral ridges laid almost horizontally and from left to right. Membrane smooth; cytoplasm retraeted, hyaline, gramular; a stout tlagelhm directed straight forward, sometimes also a trailer.

Var. angusta, n.var. (Pl. ix.. fig. 3).
Cellulae ambitu longe-ovales: utrotue polo obtusae infra marginem spiná praeditae; rugis spiralibus 3-4 oblicque dispositis alte excavatae; eytoplasmate haud retracto; ceteris ut in forma typisa.

Long. 40, lat. 21μ. Lismore.
General outline long oval; obtuse at each end. with a sharp point within the margin; only $3-4$ ridges spirally and oblipuely wound e eytoplasm not retracted; a flagellum and a trailer observed.

Spheromonas mbabllis, m.sp. (Pl. ix., figs. 4, 5).
Cellulae oblongae, ntroque polo mondatae: costis spiralibus 6 oblique rel per longitudinem dispositis umatae; membrana glatna, costis haud granulatis; eytoplasmate retracto. hyalino, gramulato; flagelto valido recto.

Long. $34-36$, lat. $18-23 \mu$. Lismore ($328,345,365$).
Cell oblong, romded at each end: membrame smooth, ridged by 6 sharpedged spiral costae longitudinally and more or less obliqnely wound and from right to left (the opposite way to $S_{p} h$. spiralis). Cytoplasm retracted, hyaline, granulate, flagellum steut, straight, no trailer noted. Find view eireular.

Fam. PERANEMACEAE.

Genus Peraxema (Ehr.) Stein.
l'eranema macobhokra (Elir.) forma. (I'l. ix., fig. 6).
Forma angusta arectatia. Long. 50, lat. 10μ.
1 doubt if I have ever seen the type of this species. The European form is fusiform. The speeimen figured is narrower and arehed. Botanic Gardens, Sydney (156). ('f. Semn., p. 180. f. 130..

Peranema coneapum, n.ep. (Il. ix., fign. 7-9).
Long. $25-70$. tat. $5-15 \mu$. Auburn (139, 140); Botanie Gardens (156); Parranalta (132) : Lismore (187).

This is the common Peranema of our waters. It is, when free-swimming, cuneate, sharp-pointed in front and abruptly truneate behind; one corner is sometimes produced as a pointed tail directed baekwards, or a blunt wart-like prominence often lifid and placed to one side. A minnte stigma may oceasionally bo ubserved. Cytoplasm homogeneous and transparent. Neither Stein nor Dujardin deseribe or figure anything even remotely resembling this form. The body is metabolic.

Peranema inpertin, nsp. (Pl. ix., fig. 14).
Fomm corpore glohosu; granulis amylaceis ubigue asperrima.
Long. 15-16, lat. 11-1 $-\mu$. Rookwond; Lismore (286).
A small, irregular, globose wr sublubse form with the surface rugged all over with large irregular amylaceons granules.

Var. rectangllare, n.var. (Pl. ix., fig. 15).
Forma evlindracea. Dimensiones ut in forma typiea.
Genus Urceolés Meresthuwski.
Urceoles sabuloses (Stokes) Senn. (Pl. ix., fig. 16).
Syn. Urceolopsis sabulasus Stokes, op. cit.
Long. 42, lat. 19 ; lat. oris 13μ. Lismure.
Hyaline, granular, surface slightly rough, mouth and neck smooth. It glides along applying the huge mouth (which seems to be a kind of open pharynx) to the Hoccose and sueking in anything edible.

Genus Heteronema (Duj.) Stein.
Heteronema acus Ehr. (Pl. ix., fig. 17).
Long. 30-90, lat. $3-6 \mu$. Auburn (159) ; Botany; Pott's Hill (121).
Flagellnm and trailer noted.
Genut Tropidocypites Stein.
Trophocyphes octocostatus Stein. (PI. viii., fig. 21).
I give a side view of an animalrule that may be this species. Stein, T. xxiv., f. 1-5: Sem, p. 183.

Cenus Notosolentis Stokes.
Notosolenus pentagonus, m.sp. (Pl. ix., figs. 2. 3).
Format corpore pentagono; frunte acute-rotundata, pune truncata; lateribus emarginatis; angulis rotunlatis; vertiee risa compressa.

Long. 21 , lat. 17μ. Lismore (358).
There are three other speries described and figured hy Stokes. op. cit., p. 108 , Pl. ii., f. 10-14; cf. Senn. p. 183. All forms of the genns are compressed arruate in end view. This species forms a fairly regular pentagon with the anterior angle somewhat produced; boty truneate behind, widest in the middle; sides emarginate, angles rounded. Cytoplasm hyaline, finely granular in the centre of the cell, with a pharyn-like mark below the flagellum. Stokes also remarks on this. Flagellum thiek, straight, a long trailer sometimes present.

Genus Anisonema Dujardin.
Asisoneala acinces Duj. (Pl. ix., fig. 18).
Syn. Anisonema aratum Maskell, Trans. N.Z. Inst., N.S., vol. 20. 1887, T. i., f. 8; Maskell gives long 20μ. Our specimens agree entirely with Dujardin's figure and description (op. cit., p. 345, ll. iv.. f. $2 \overline{2}$; not Pl. v. as in the text). Senn's figure (Flagellata, p. 183, f. 134.s) is quite difterent, being clliptical and attenuate slightly to each end. Dujardin's dimensions, long. 20 to 31μ. just cover Hakell's and ours. The traiker is very long, quite three times the lenglh of the body sometimes.

Long. 30. lat. 18μ. Rookwood; Lismore (260).

> Anthosema hexaconum, n.sp. (Pl. ix., fig. 19).

Cellulae inacupaliter hexagonae: in medio sulnquatralac; sursum et inferne triangulari-conicae; utronue polo acutae; lateribus rectis; uno latere transverse siriata.

Long. c. 30, lat. 18μ. Duck Creek. Clyde; Guildford.
Irregularly hexagonal, central part subpuadrate; above and below triangu-lar-conical, ends printed, sides straight, transwersely striate, apparenty on one side only: flagellum and long trailer observed.

Var. eleciass, nwar. (Pl. ix. fig. e0).
Quam forma typica longior et angusion.
Long. e. 40 . lat. 10μ. Durk Creck. Clyde; Guildford.
The same general shape is the type, but longer and more slender. Bots very rare, sizes unly estimated.

Aninonem (imande (Ehr.) Stein. (Hl. ix., fig. ? 1)
Long. e. 38, lat. 21, (risso e. $10 \frac{1}{2} \mu$. Lismore (328).
Sym. Borlo grandis Ehr.; of. Stein, T. xxiv., it. 6-11, but his figures are not convincing and look too mneh like Anixonema acinus Duj. which he grves as a synuym. That is, however, a much smaller species, only about half the size of this. Rents figures are copies of Stems, exeep f. 30 (after butedhi). The latter seems to represent our form. The subapieal groore, in which the traiker is inserted, is not conspreuons as in A. acimus. The hinder part oi the lody often contains coloured mases of ingested food-stuffs and esen whole organisms such as Trachelomonas. There is the usual siout straight flageltum and rery longe thick trailer, often three times the length of the body. The latter is rompresed in sile view.

Genus Extosiphox Stein.
Extosiphos stlcatum (Duj.) Stein. (Pl. ix., fig. 22).
Long. 2P, hat. 14μ. Lisurere, Rare.
Sy3. trisonema suleata 1)uj.. p. 345. 1'l. is.. f. :2s. Senn gives long. 15-25, lat. $7-15 \mu$

EXPLANATLON OF PCATES I.-IX.

Plate i.
Fig. 1.-Poleriodendron petiolatum Stein (x 800).
Fig. コ.- \quad, \quad." var. Abbotli (Stokes) mihi (x 800).
Figs. 3, 4.-Salpingoeca ampullacea (A. Br.) Stein (x 1600).
Fig. 5.- ., .. var. cordata, n. var. (x 1600).
Fig. 6. - .. amphoridium var. austratica mihi (x 1600)
Fig. 7.- \quad, \quad Steinii Kent (x 1600).
Figs. 8, 9.- \quad - ablonga Stein (x 2400).
Fig. 10. -Bodo edax Klebs (x 2400).
Fig. 11.- ,, sallants Ehr. (x 2400)
Fig. 12.-Trepomonas agilis Duj. (a) front, (b) side (x 2400).
Fig. 13.-Hexamila inflata Duj. (?) (x 2400).
Figs. 14, 15.-Ochromonas aspera, n.sp., (a) side (x 2400).
Fig. 16.- \quad, cylindracea, n.sp., (a) side (x 2400).
Figs.17-21.-Dinobyron serfularia Ehr. $(17,19)$ two forms of lorica; (18) zooid; $(20,21)$ cysts; (all x 1200).
Figs. 22, 23.-Dinobron sertularia var. angulalum Seligo, two forms, (x 1200).
Figs. 24, 25.- ,, cylindricum var. divergens (Inhof) Lemm. (x 1200).
Figs. 26, 27.- \quad ulriculus (Ehr.) Klebs, two forms, (x 1600).
Figs. 28, 29.- ,, var. Tabellariae Lemm., (28) five individuals joined by the dises of their pedicels ($\times 1600$) ; (29) cyst (x 1200).

Plate ii.

Figs. 1, 2.-Mallomonas acaroides Perty; (1) young form, type (x 800); (2) mature form (x 1200).
Fig. 3.-Mallomonas splendens (G. S. West) Playf. (x 1200).
Fig. 4.- \quad, \quad var. pusilla, n. var. (x 1200) .
Fig. 5.- \quad. australica, n.sp. (x 1600).
Fig. 6. ., , v. gracillima, n. var. (x 1600).
Figs. 7. 8.- ," v. subglobosa, n. var. two stages of growth, (x 1200).
Fig. 9.- \quad lilomesa Stokes (x 1600).
Fig. 10.- , , var. curla, n. var. (x 1600).
Fig. 11.-Phaeococcus planktonicus W. \& G. S. West (x 320) (a) simple zooid (x 960).
Figs. 12.14.-Scintilla chlorina, n.sp. ; (12) x $2400,(12,14) \times 1600$.
Fig. 15.-. , splendida, n.sp. (x 800).
Figs. 16-18.-Synura zivescens (Bory), three forms ; (all x 1600).
Figs. 19-22.-Chilomonas paramecium Ehr., four forms; (all x 1600).
Fig. 23.-Cryptomonas ovala Ehr. (x 800).
Fig. 24.- \quad - ampulla, n.sp. (x 800).
Fig. 25.- \quad maxima, д.sp. (x 800).
Fig. 2b.— ., Nordstedlii (Hausg.) Senn. (x 1600).
Fig. 27.- ., gemma, n.sp. (x 1600).
Fig. 28. \quad - oblonga, n.sp. (x 1600).
Plate iii.
Fig. 1.-Eutreptia vividis Perty (x 560).
Fig. 2.-Colacium zesiculosum (Ehr.) Stein (x 1200).
Fig. 3.- \quad, \quad forma, cf. Stein, T. xxi., f.31,32 (x 1200).
Figs. 4-6.- ,, elongahum, n.sp. (4) $\times 1200,(5,6) \times 2400$.
Fig. 7.-Euclena airidis Ehr., large cylindrical form (x 1200).
Figs. 8, 9.- ,, sociabilis Daugeard (x 800).
Figs. 10, 11.—,, amblyophis (Ehr.) mihi (x 400).
Figs. 12, 13.-,, deses Ehr. (13) another form of head (x 960).
Fig. 14.- ", ., developing out of the vegetative cell (x 800).

F1g. 15. - Euglena deses var. minuta, n. var. (x 1200).
Fig. J6.- ,, , var. inlermedia Klebs (x 1200).
Fig. 17.- ,, oxyurus Sehmarda (x 300).
Fig. 18.- , , , var. helicoillea (Hernard) mihi (x 300).
Firg. 19.- .. ,. var. gracillima, n. var. (x 400).
Plate iv.
Fig. 1. Liuglena tripleris (Duj.) Klebs. (x 480).
Fig. 2. , spirogyra (Ehr.) ($x 800$).
Fig. 3.- ., ,. with grannles forming here and there (x 400) .
Fig. 4. ,. ., viar. elegans, n. var. (x 800).
Fig. 5. ,. arus Elr.; om nearest form (x 60 O$)$.
Fig. 6.- , wiulissima Lemm. (x 600).
Figs. 7, 8.- \quad, \quad var. parith, n. var. (7) $\times 12(k),(8) \times 800$.
Figs. 9-11.- , pisciformis Klehs. (x 1200).
Fig. 12. ., tex/a (Duj.) Senn, showing strias (x 800).
Fig. 13.- ,, , var. ovala, n. rar. (x 960).
Fig. 14.- ,, .. var. obesa, n. var. (x 525).
Figs. 15. 16.-, , var. bullata, n. var. (15) x 525. (16i) $\times 1206$.
Fig. 17.- , gullula, n.sp. (x 1200).
Fig. 18. , , , var. clongala, n. var. (x 1200).
Fig. 19. \quad rizida, n.sp. (x 1800).
Figs. 20, 21 .. pusilla, n.sp. (20) $\times 1600$, (21) $\times 1800$.
Fig. 22. \quad, \quad, \quad var. longa, n. var. ($\times 1200$)
Fig. 23.- ,. sp.? (x 1200).

Plate v .

Fig. 1.-Whacus pleuronectes (Miiller) Duj. (x 800).
Fig. 2.- ,, , var. minutus, is. var. (x 800).
Figr. 3. ., \quad var. australis, n. var. (x 480).
Fig. 4.- ," hispidulus (Eichwald) (x 1200).
Figr. 5. - , monilala var. suecica Lemm. (x 1200).
Fig. 6.- \quad, longicauda (Ehr.) Dnj. (x 400).
Fig. 7.- , , var. -_ Lemm. (x 800).
Figs. 8-11.- . $\quad 1$-iqueter (Ehr.) Duj. (x 960).
Fiss. 12, 13.-., inflalus, n.sp. (x 1600)
Fig. 14.- lismorensis, n.sp. (x ! (ti0).
Fig. 15. .. frram var. ozalus, n. var. (x 1600).
Fig. 16. ., ., var. australicus mihi. (x 9ter).
Figr 17.- . ., var. rudicula, n. var. (x 1200) ,
Fig. 18. (imploglena australis, n.sj. (a) side; (x 1600)).
Fig. 19. \quad, \quad phacoidea, 11.sp. (x 1800).
llate vi.
Fig. 1. Lepocinclis Steinii var. succica Lemm. (x 1200).
Fig. 2.- ., splagninicola Lamm. (?); (x 1200).
Figs. 3, 4. ., cymbiformis, n.sp. (x 1200).
Figs. 5, 6.- ", capilala, n.sp. (5) $\times 1200,(6) \times 800$.
Figs. 7, 8.- ., costata, n.sp. (x litoo).
Fig. 9.- ., ., v. obe'sa, n. var. (x 10ino).
Figs. 19, 11.- , paxilliformis, n.sp. (x 800).
Fig. 12.- Trachslomonas zolvocina var. planklonica, n. var. (x 1200).
Fig. 13.- , , var. scabra, il. var. (x 1200).
Fig. 14. ., \quad, var. coronella, n. var. (a) another collarette; (x l6m) .
Fig. 15.- \quad, \quad var. fus/ulosa, n.var (x 1900).

Fis. 16.-Trachelomonas bohmicia var. horealis, n. var. (x 800).
Figs. 17, 18. , oeralis Playf. (17) with discoirl chluroptasts, (18) chlorophyll irremparly reticulatel (x 1200).
Fig. 19.-,\quad teres Maskell, fomma. (a.b.c) three other forms of collar (x 1300).
Fig. 20. \quad - bulla var. austratis Playf. (x 800).
Fig. 21.- oblonga Lemm. (x 1600).
Fig. 23. - \quad, putcherrina var. minor Playf. (x 1200).
Fig. :3.- Volaii var. sutcuta, n. var. (x 1200).
Fis. こ4. -, \quad, mpulluta var. major Playf.; a serohicnlate form with zooicl. (x] 200) .
Fig. 25.- val.gracilis, n. var. (x 1200).
Fig. -2f.- \quad, var. élliptict, n. var. (x 1200).
Fig. 27. -. chatata vin' subarmata Playf., a lorica with ruticulate surface, and zooirl. (x 1200).
Fior. 28.- eurystoma var. parza, n. var. (x 1800)
Fips. 29. 30.- ., coronata, n. \times 1. (x 1200).
Platr vii.
Fig. 1. Trachelomomas splendida, n.sp. witli zooid showing internal structure and diffused chlorophyll. (x 1050).
Fig. 2.- \quad, \quad bacillifera var. mimima Playf. (x 16 m$)$).
Fig. 3.-, , , var. gtobutosa, u. var. (x 120))
Fig. 4. -- urmatu var. slabra Playf., showing zooil with reticulate chlorophyll. (x 9tio).
Fig. 5 . \quad, , var. duplex llayt., form with pointerl, not bacillar. auterior awns. ($x 800$).
Fig. 6.- .. pallispinosa, n. sk. (x fiow).
Fig. 7. ., soabra var. cordata Playt. forma. (x 16к0).
Fir. 8. , "Gmminata var. amphora Playi. zooill with ditfused chlorophyll. (x 960).
Fig. 9. \quad., $\begin{aligned} & \text { rreolata Stokes with zooid. (x 800). }\end{aligned}$
Fig. 10. \quad. Givardiana vir. glabra, n. var. with zooid. (x 120k).
Fig. 11. - , hesperia, n.sil. (x 1 (ito) .
Figs. 12-14.-. napiformis var. breatottis, n. var. (12) showincr zooil, x 800 .
$(13,14)$ other forms of week, x 120 H .
Fig. 15. - .. ctheath, n.sp. (x 1200).
Fig. 16. , Sibherosa var. longicoltis, u. var. (x 12(k)).
Fig. 17... ., viur tumida, n. var. (x 960).
Fig. 18. .. rotundatu mihi. (x 96 i 1).
Figs. 19, 20.- lanceolata, n.sp (19) from Parramatia; (20) from Lismore (x 120 O) .
Figr. 21... .. spiralis, n.sp. (x 12001).
Fig. 22. .. lismorensis var. mirabilis Playf., characteristic spine.
Plata viii.
Fig. 1.--Menoilinm pettucidum Perty, type. (x 120) 1).
Fig. 2.- ,, inflatum mihi. (x 800).
Fig. 3.- , acutissimum, n.sp. (x 6 OO).
Fiys. 4, 5.- ,, !racile, n.sp. (x 800).
Fig. 6.- i. incuritun Fresenius (x 1800).
Fis. 7.- ', torthosum (Stokes) Senn, three specimens (x 800).
Fig. 8.- Distigma protents var. Clazatum mihi. (x 800).
Fig. 9.-Astasia margaritifora Schmarian. (x 1800).
Fig. 10. Sphenomonas quadrangularis var. craciformis, u. var. (a) ent view. (x 1 foo).
Fis. 11.- , australic, n.sp.; (a) mul view. (x 1600).
Fis. 12. ., var. eltiptica, n. vall. (x 1600).
Figr. 13. -, var. thomberdea, n. var. (x 16in)).

Figs. 14, 15. - , teres Stein (14) type x 24(0); (15) form x 190 .
Figs. 16, 17.- .. \quad var. pyriformis, n. var. (16) $\times 2400:(17) \times 1600$.
Fig. 18. ., ., form, with incipient ridges. (x 1600).
Figs. 19, 20.- ., triquelra, n.sp. (20) type x 1200; (19) קar. chneata n. var. x 1200. (a, a) end views.
Fig. 21. - Tropidocyphus octocostatus Stein (?) side view (x $16(\mathrm{~m})$).
Plate ix.
Fig. 1.-Sphenomonas excazata, n.sp. (a) side. (b) and (x 1200).
Fig. 2.- ,. spiratis, n.sp. (x960).
Fig. 3.- , , var. angustu, n. var. (x Mi(1) .
Figs. 4, 5. . . mirabilis, n.sp. (x 1200).
Fig. 6.-Peranema tricophormm (Ehr.), format. (x 800).
Fig. 7-9.- \quad, cuncatum, и.sp. (х 800).
Figs. 10-13. Distigma protens var. clazatum mihi, supposed yonng forms. (x 800).
Fi_{g}. 14.-Peranema aspernm, n.sp. (x 1200).
Fig. 15.- , ., vax. rectangutare, n.var. (x 1200) .
Fig. 16.-l'rceolus sabulosus (Stokes) Semu. (x 800).
Fig. 17.- Heteronema acus Ehr. (x 800).
Fig. 18.-Anisonema acinhs Daj. (x 1600).
Fig. 19. .- hexagonzm, п.sp. (х 1600).
Fig. 20. ., .. var. clegans, n. var. (x 1600).
Fig. 21... ., grande (Ehr.) Stein (a) side. (x 1200).
Fig. 22.-Lintosiphon sulcatum (Duj.) Stein (x Ibion).
Fig. 23.--Notosolenus pentagonus, n. sp . ($\mathrm{x} 16(\mathrm{~m})$).

